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“Statistics is the grammar of science” - Karl Pearson

“Lies, damned lies, and statistics” - Mark Twain/Benjamin Disraeli.
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Abstract

In the first part of this thesis, we compute the effect of misspecifications and
misinterpretations of Solvency II Value-at-Risk models. We investigate the ef-
fect of backtesting using a rolling window without correcting for the use of the
rolling window (a misinterpretation). We show that this leads to a significant
increase in the probability of finding an historic extreme event in the data the
model is calibrated on. If not corrected for this effect, backtesting with a rolling
window can lead to false rejections of Value-at-Risk models. We illustrate this
by analyzing the evaluation of the equity stress parameter for Dutch Pension
Funds, which is said to be too low. We find that the rejection of the parameter
in the report can be explained by the use of a rolling window. We propose a step
by step approach to correctly backtest using a rolling window. To our knowl-
edge, this is the first time the effect of this commonly made error is quantified.
Next to that, we investigate the effect of a number of possible misspecifications
of Value-at-Risk models. The normality assumption is at the heart of Solvency
II. We compute how much the probability of finding an extreme event increases
if normality is assumed, and effects like autocorrelation, clustered volatility, and
heavy tailedness of distributions are neglected. Next to that, we have extended
an existing analysis of the effect of scaling up the VaR of a Jump Diffusion
process to a longer time horizon by the square root of time rule. By considering
different time horizons, we identify three different regimes, and their implica-
tions on the use of the square root of time rule, of which two regimes do not
occur in the current analysis.
For the misspecifications, we have computed possible theoretical effects, and
investigated the practical relevance by computing the effects for realistic pa-
rameter values. For this purpose, historic interest rate data, and calibrations
of Jump Diffusion models and GARCH models on historic equity (option) data
have been used. For realistic parameter values, we find increases in the proba-
bility of finding an extreme event by a factor between 2 and 4. For backtesting
with a rolling window, we even find an increase in the probability of finding
an extreme event by a factor 7. Therefore, the found effects are relevant, and
should be considered when calibrating VaR models.

In the second part of this thesis, statistical pitfalls of the one-year horizon in
Solvency II are investigated. We compute long term probabilities of ruin and
default for insurance companies all starting with an initial Solvency II ratio of
100%. We vary investment strategies, liability durations and cashflow patterns,
and show that this highly influences levels of safety on time horizons beyond
one year. In the light of the level playing field, we plead to consider longer
time horizons in Solvency II beside the currently used one-year horizon, analo-
gous to the regulations for Dutch Pension Funds. We show that for longer time
horizons, probabilities of ruin and default are more sensitive for assumptions
of mean reversion of risky assets, and therefore assumptions should be set with
care.
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1 Introduction

“Lies, damned lies, and statistics” - Mark Twain/Benjamin Disraeli.

Statistics is an interesting field of research, with ample applications in forensic
science, biomedical science, psychology, economics, actuarial science, and many
other fields. If used correctly, it can be a useful tool to determine whether a
medicine works significantly better than a placebo, whether we can put some-
one to jail based on a match of his DNA or how the age of a driver influences
the probability of making a car accident. The phrase above shows that not
everybody shares this enthusiasm. It refers to the feeling that statistics can be
misused to defend ones opinion on false grounds. It is possible to do so, because
a statistical analysis often does not correspond with the intuition people have.
This is illustrated by a famous example. A mother has two children, and we
know one of them is a boy. If we ask a person about the probability the other
child being a girl, many people will answer “one half”. However, the correct
answer is “2/3”. It can be easy to mislead somebody (accidentally or on pur-
pose). An example with serious consequences is the conviction of the Dutch
nurse Lucia de Berk, based on erroneous statistics. Statistics is an important
tool for insurance companies, and models based on statistics are used to make
risk management decisions. In this thesis we will treat some statistical pitfalls
that can be easily made, which from a risk management perspective can have
serious consequences.

Solvency II is a framework of regulatory solvency requirements for European
insurance companies. It will be more risk-based compared to the current Sol-
vency I framework. Based on latest available information, it will be effective
no earlier than 2016. Solvency II consists of three pillars, and contains qual-
itative, quantitative, as well as governance aspects. Pillar I sets quantitative
requirements for the amount of capital an insurance company should hold. This
amount is risk based. If a company takes more risk, for example by investing
in risky assets, or by giving risky guarantees (from the perspective of the in-
surance company) to the policy holders, this is reflected in a higher required
capital. Insurance companies can use the standard formula to compute this
capital, but they can also develop an internal model. For every risk (interest
rate, equity, longevity, expense, etc.), a model should be made to describe a
“1-in-200 year” shock, and those risks should be aggregated to a Solvency Cap-
ital Requirement for the insurance undertaking as a whole. According to the
directives of Solvency II [1], “Each of the risk modules ... shall be calibrated
using a Value-at-Risk measure, with a 99.5 % confidence level, over a one-year
period.”
In this thesis, we describe some statistical pitfalls that may occur in Solvency
II Value-at-Risk (VaR) models. This thesis contains two parts. In the first part
we describe the statistical pitfalls that can occur when Value-at-Risk models
are calibrated and scaled to a longer time horizon (for example, by the famous
square root of time rule), and VaR models are backtested using a rolling win-
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Figure 1: The three pillars of Solvency II. Source: www.ariscommunity.com

dow. The second part will show some pitfalls related to the one-year horizon
in Solvency II. Solvency II solely focuses on a one-year horizon, where other
regulatory frameworks also take longer time horizons into consideration.

For Solvency II internal models, it is obliged that the model is validated. The
European Insurance and Occupational Pensions Authority (EIOPA) has writ-
ten guidelines for the validation procedure. One of the requirements is that the
model is backtested [2]:

“Many assumptions are set based on an analysis of historical data. There is
therefore a presumption that past performance is a good indicator of future
performance. Back-testing may be used to assess the validity of this underlying
assumption”

If the model is correctly specified, one expects that the probability of find-
ing an extreme event in history is 0.5% per year. If more events are found than
expected, this can be a reason to question the validity of the model. Therefore
it is important that the backtest is performed in a correct way. In practice,
often more historic extreme events are found than we would expect based on
the confidence level of the stress. For example, if a 1-in-200 year stress is cali-
brated, and in the last 40 years 2 events exceeded this stress, this corresponds
to a p-value of 1.7%, and we can say the backtest has failed. We will describe
different causes of finding more than expected extreme events. We will distin-
guish between two different categories: a misspecification of the model, and a
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Error True data Assumed data Presentation
generating process generating process effect error

Misspecification 1 Neglecting autocorrelation MA(1) Random Walk Increase in
in residuals probability finding

an extreme event
Misspecification 2 Wrong distribution Student-t Random Walk Increase in

of errors probability finding
an extreme event

Misspecification 3 Neglecting clustered GARCH(1,1) Random Walk Increase in
volatility probability finding

an extreme event
Misspecification 4 Assuming square root of Jump Diffusion, Jump Diffusion, Increase in

time rule Value-at-Risk yearly VaR scaled up monthly yearly VaR
VaR

Table 1: Overview of misspecifications treated in this thesis. The third column
represents the true data generating process, and the fourth columns describes
the assumption made when calibrating the VaR model. The error that is made
by making this assumption is shown in the second column. The last column
describes how the effect of the error is quantified. The effect can be quantified
by computing the increase in the probability of finding an extreme event due to
the error made, or by the difference between the true VaR and the VaR under
the erroneous assumption.

misinterpretation of the model.

If the model is misspecified, this can lead to an underestimation or overesti-
mation of the 1-in-200 stress over a one year horizon. We will investigate four
misspecifications. For all four misspecifications, we will assume there is a true
data generating process, and some erroneously assumed data generating process
or statistical rule. We will create data based on the true process, and analyse it,
based on the erroneous assumption. Then we will study the impact of the error
made, in terms of an increase in the probability of finding an extreme event,
or an under- or overestimation of the Value-at-Risk. The erroneous assumption
will be linked to the normality assumption, since the normality assumption is
at the heart of Solvency II. This is reflected in the aggregation of risks in the
Standard Formula, where the total Solvency Capital Requirement is computed
by computing correlated sums of individual risks. This aggregation method is
almost exclusively correct if the underlying risk factors are normally distributed.

In practice, even if the true data generating process is assumed, wrong pa-
rameters can be calibrated due to a limited data set. We will leave this out of
consideration, and, for simplicity, assume an infinite set of data is available. A
summary of the misspecifications and the assumed data generating processes is
given in Table 1.

We will consider four misspecifications of a data generating process describing
a dataset. The effect of autocorrelation in the residuals of a data generating
process will be investigated by considering an MA(1) model. If the errors (i.e.
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the deviation between the realized and one-step-ahead predicted value of a time
series) experience autocorrelation, a large error is more likely to be followed by
another large error, and this has an effect if one predicts a number of time steps
ahead. The practical relevance of this effect is shown by an example based on
historic interest rate data.
To investigate the misspecification of a distribution, we will investigate the ef-
fect of errors that are Student-t distributed as opposed to a normal distribution.
The Student-t distribution has heavy tails, which means that the probability
mass in the tails of the distribution is relatively higher compared to a normal
distribution. Furthermore, we will investigate the effect of neglecting clustered
volatility in the residuals by means of a GARCH(1,1) model, where the standard
deviation of an error depends on the standard deviation and realized error of
the previous timestep. In the study of the Jump Diffusion effect, we will take
the article of J. Danielsson and J.P. Zigrand [4] as a starting point. They have
studied the impact of the square root of time rule, when a daily VaR is scaled
up to a 10-day VaR. We will extend this analysis by comparing a monthly VaR
with a yearly VaR, which is a more relevant timescale for insurance companies.
The square root of time rule has been investigated in numerous articles. Diebold
et. al. [3] warn for the use of the square root rule for scaling volatility from a
one day horizon to multiple days. McNeil [5] and McNeil and Frey [6] have
investigated a time series that follows a GARCH process, and find a power law
for scaling the daily Value-at-Risk up to 50 days. In times of average volatility,
they find a scaling factor of 0.6. The square root of time rule corresponds to a
scaling factor of 0.5, and thus, using the square root rule underestimates risk.
They disagree with Danielsson and de Vries [7], who find that for heavy tailed
distributions, the square root rule overestimates the risk at longer horizons. The
analysis of McNeil is based on Monte Carlo simulations, and Danielsson and de
Vries use a theoretical assumption to compute the distribution of the tails of a
sum of heavy tailed variables. Our results will show that for a Jump Diffusion
process, the square root of time rule can lead both to an under and overesti-
mation of risk, depending on the frequency of the jumps, relative to the time
horizon considered.

If a model is misspecified, this can result in a wrong required capital of the
insurance undertaking. If the required capital is underestimated, the company
is less safe than the regulator, customer, and the company itself expect. This
will lead to incorrect risk management policies. Therefore, it is important that
one is aware of possible pitfalls.

We will consider one type of misinterpretation: backtesting with a rolling win-
dow. To properly backtest a Value-at-Risk model over a one year horizon,
independent historic yearly stresses should be evaluated. In practice, the avail-
ability of historic data is often limited. Therefore, the model is often backtested
using a rolling window. Instead of evaluating the stresses between year-end
data, also stresses between January and January, February and February, until
December to December are computed. This increases the probability of finding
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an extreme event, since more events are considered, and a shock that occured
in February may have been recovered by the end of the year. If one does not
correct for this effect, it can lead to a false rejection of the model. For example,
it is possible that based on a rolling window, 3 extreme events in 40 years of
data does not lead to a significant p-value (rejection of the model), but based
on a fixed window, the model can be rejected. If extreme events are computed
based on a rolling window, but are compared with p-values based on a fixed
window, a model can be falsely rejected. Misspecifications and misinterpreta-
tions are different of nature. If a misspecification is found, the model should be
adjusted. A misinterpretation can lead to a false rejection of the model. If a
misinterpretation occurs, not the model itself should be adjusted, but the way
it is evaluated should be adapted.

The second part of this thesis will show some pitfalls of the one-year horizon
in Solvency II. One of the ideas behind the European Solvency II regulations
is that it creates a level playing field. We will show that this is not the case,
but the strictness depends on the distribution of the liabilities in time, and the
investment strategy used. Although Solvency II is a huge improvement with
respect to Solvency I since it is risk based, it can be improved by also looking
at different time horizons.
We will distinct between within-horizon risk and end-of-horizon risk. Within-
horizon risks reflects the risk that at a certain point in time, the market value
of the assets is not sufficient to fund the market value of the liabilities. We will
refer to this as a ruin. End-of-horizon risk, or default risk, refers to the risk
that an insurance company does not have enough assets to make a payout, and
it goes bankrupt. First, we will investigate an insurance company having one
liability, at different points in time. The advantage of this simplified model is
that we can compute probabilities of ruin and default analytically. We will also
investigate different cashflows patterns, namely a constant cashflow over time,
and a decreasing cashflows pattern. Ruin probabilities and default probabilities
will be computed using simulations. We will add mean reversion to the model,
and analyse the impact of the results on the level playing field of Solvency II.

The outline of this thesis is as follows. In Sections 2, 3, 4 and 5, we will quantify
the effect of neglecting autocorrelation in residuals, assuming a wrong distribu-
tion of errors, neglecting clustered volatility, and erroneous scaling of VaR of a
Jump Diffusion process respectively. Then, in section 6, we will study backtest-
ing with a rolling horizon. We will compute the effect for AR(1) and Random
Walk models, and illustrate the effect by evaluating different historic equity in-
dices. In particular, we will look at the conclusions of an evaluation report of
the equity stress parameter used by pension funds. We will propose a step by
step approach for backesting with a rolling window in a correct manner.
In the second part of this thesis, we will start by introducing the terminology of
time horizons and probability of ruin and default in section 7. Then, in section 8,
we will analytically compute probabilities of ruin and default under different in-
vestment strategies and we will compare effects for different time horizons. In
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section 9 we will study the effect of different cashflow models, and in section 10
we will add mean reversion to the model. We will show implications for the
level playing field in section 11, and we will end with conclusions.
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Part I

Statistical pitfalls in VaR models
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2 Misspecification: Neglecting autocorrelation
in residuals

In this section we treat a first possible misspecification of a VaR model, that of
neglection of autocorrelation in the residuals (i.e. the deviation of the observed
value from the one-step-ahead predicted value). We will start with a theoretical
approach. We will quantify the effect of neglecting autocorrelation if data is
generated by an MA(1) process, for different values of the autocorrelation pa-
rameter. Then we will consider the practical relevance of this issue by applying
the model to interest rates.

For Solvency II purposes, we are interested in a stress that can occur over a
one year horizon. Often in practice, models are calibrated on weekly, monthly
or quarterly data. The stress found over a given time period is scaled up to
a horizon of one year. An advantage of this method lies in the fact that the
number of independent data periods increases. Often, a limited data history is
available, and using for example monthly data instead of yearly data increases
the number of data points with a factor 12. However, this method also has a
potential hazard. If scaling is done incorrectly, this can lead to under- or overes-
timation of the stress over a one year horizon. One possible mistake that can be
made is the neglection of autocorrelation in the (monthly) residuals. Positive
autocorrelation in the errors will increase the stress, because a large error is
more likely to be followed by another large error.

Here, we will quantify the effect of neglecting autocorrelation in the residu-
als. As pointed out in the Introduction, our approach will be to assume a true
generating process, and an incorrect alternative data generating process. We
will assume we have an infinite set of data available, and study the effect of an-
alyzing the data under the incorrect assumptions. We will assume the true data
generating process is an MA(1) process. We will study the impact of incorrectly
assuming that the data follows a Random Walk. We assume the Random Walk
is calibrated at time periods of 1

k year, and is scaled up to a yearly horizon to
determine the yearly VaR. We study the MA(1) model because it is a simple
model that contains the feature we are interested in, namely, autocorrelation in
the residuals. Because it is a basic model, it is suitable to distill the effect we
are interested in.

The specification of the MA(1) model is as follows:

yt = yt−1 + ϵt + ρϵt−1

ϵt ∼ N(0, σ2) i.i.d. (1)

The autocorrelation in the residuals is described by the parameter ρ. The value
of the time series at time t depends on the error of the previous time step. If
ρ > 0, an increase in y is more likely to be followed by another increase. If
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ρ < 0, the effect of an increase is likely to be offsetted by a decrease in the next
time step.
By iterating this equation, we can find a relation between the value of the time
series at time t, and the value of the previous year t− k.

yt = yt−1 + ϵt + ρϵt−1

= yt−2 + ϵt−1 + ρϵt−2 + ϵt + ρϵt−1

= ...

= yt−k + ρϵt−k−1 +
k−1∑
n=1

(1 + ρ)ϵt−n + ϵt (2)

Based on this relation, we can determine the one year standard deviation, taking
into account the autocorrelation in the residuals.

E(yt|yt−k) = yt−k + ρϵt−k−1

V ar(yt|yt−k) =
k−1∑
n=1

(1 + ρ)2σ2 + σ2

= σ2(1 + (k − 1)(1 + ρ)2) ≡ σ2
ma(k, ρ) (3)

Now assume we do not model the autocorrelation in the residuals. Instead, we
will naively assume the data follows a Random Walk. Because the autocorrela-
tion explains part of the variance in the data, the calibrated standard deviation
of the error based on the calibration of the Random Walk will be higher than the
standard deviation found by calibrating the MA(1) model. When we scale up
the error to a horizon of one year, we will multiply the variance by the number
of steps k. We can do this, because we assume the data follows a Random Walk.
Therefore, all errors are independently and identically normally distributed, and
the variance of the sum of k errors is equal to k times the variance of one error.

ỹt = ỹt−1 + ηt

ηt = ϵt + ρϵt−1

V ar(ηt) = σ2(1 + ρ2)

E(ỹt|ỹt−k) = ỹt−k

V ar(ỹt|ỹt−k) = kσ2(1 + ρ2) ≡ σ2
rw(k, ρ) (4)

If the security level is α (for example α = 0.005), the calibrated stress value
based on the Random Walk will be σrwΦ

−1(α). The probability p that an
extreme event will be found over a one year horizon, based on the true MA(1)
process, equals:

σmaΦ
−1(p) = σrwΦ

−1(α)

p = Φ

(
Φ−1(α)

σrw

σma

)
(5)
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Under the assumption that the model is specified correctly, the probability to
find an extreme event in n years of data is 1 − (1 − α)n. Due to the incorrect
assumption of the Random Walk, the probability however is 1− (1− p)n. This
results in a relative factor R of:

R =
1− (1− p)n

1− (1− α)n
(6)

Example 1: Step by step calculation

Assume k = 12 (monthly data), σ = 1, ρ = 0.3 n = 30, and α = 0.005.

The calibrated standard deviations based on the Random Walk and the MA(1)
process will be:

σrw =
√

(1 + 0.32) · 12 ≈ 3.62

σma =
√

1 + 11 · (1 + 0.3)2 ≈ 4.43

(7)

The calibrated 1-in-200 stress based on the Random Walk is Φ−1(0.005) ·3.62 ≈
−9.32. The true 1-in-200 stress is larger and equal to Φ−1(0.005)·4.43 ≈ −11.40.

The probability of finding an extreme event over a one year horizon is
Φ(Φ−1(0.005) 3.624.43 ) ≈ 1.8%. The probability of finding at least one extreme
event will be 1− (1− 1.8%)30 ≈ 41%, while we expect to find an extreme event
with a probability of 1− (1− 0.5%)30 ≈ 14%.

If the correct MA(1) model had been calibrated, the probability to find at least
one extreme event in 30 years of data would have been 14%. Because autocor-
relation has been neglected, and a Random Walk model has been calibrated to
determine the 1-in-200 stress, the stress found is too low, and the probability
to find an event more extreme than the proposed stress increases from 14% to
41%. This is a relative increase of R = 41%

14% ≈ 3.

Results for different values of ρ, k and n

In the graph we see the factor R for different values of k and different time
intervals n, assuming ρ = 0.1, ρ = 0.3 and ρ = 0.5. We see that R is inversely
related to n. This can be explained by the fact that when n is large, the prob-
ability of finding an extreme event is larger, and can increase less, because a
probability can not exceed one.
We also see that the effect increases with k. This is intuitively clear, since the
error of neglecting autocorrelation accumulates with every time step.
We see that if k = 1, the factor is smaller than 1. This is caused by the fact that
the stress based on the Random Walk is overestimated, since not all information
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Figure 2: Relative increase R in probability of finding an extreme event if data
generated by an MA(1) process, is analyzed as if it was generated by a Random
Walk process. R can take values larger than 3. Different lengths of historic
data are considered. Confidence level α = 0.005 and ρ = 0.3. The relative effect
increases if the model is calibrated on a shorter dataset. An increase in the
frequency of the data k leads to an increase in the underestimation of risk.

is taken into account. If k = 1, errors are not scaled up, because the model is
already based on yearly data, and therefore the effect of the autocorrelation
does not play a role, only the overestimation of the standard deviation of the
residuals.
If the size of the autocorrelation in the residuals increases, R increases. This is
also clear, because a large error has higher impact on the next time step when
the autocorrelation increases.

We see the effect of neglecting autocorrelation is substantial. Therefore, it is
very important that autocorrelation of residuals is investigated when a model
is based on fractional year data. To show the practical relevance, and study
realistic parameter values, we will apply the model to interest rates.

Example 2: Practical relevance for interest rates

In this example, we will show the effect of autocorrelation in the residuals when
interest rates are modeled. We will assume Euro swap rates to follow an MA(1)
process (true data generating process), or Random Walk (erroneous assump-
tion). Note that interest rates are often modeled by a Vasicek model, which in
discrete time, corresponds to an AR(1) model, which contains mean reversion.
Here, we will neglect mean reversion, but instead, we will include the moving
average term in the time series. We use monthly Euro swap yields with a ma-
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Figure 3: Same specifications as in Fig. 2, except ρ = 0.1 (left) and ρ = 0.5
(right) instead of ρ = 0.3. An increase in ρ leads to an increase in R.

turity of one year, from August 2002 to April 2012.

If we calibrate the Random Walk model, we find a monthly standard deviation
of 0.208%, which results in a yearly 1-in-200 stress of 1.85%. If we calibrate the
MA(1) model we find ρ = 0.37, and a monthly standard deviation of 0.191%. If
we scale up this standard deviation, taking the autocorrelation coefficient into
account, we find a yearly 1-in-200 stress of 2.29%, which is significantly higher
than we one based on the Random Walk.

Neglecting the moving average term will lead to an underestimation of the yearly
stress. This is illustrated in Figure 4, where we compare the 99.5% stresses of
those two models with the observed changes in the swap rate between year ends.
The most extreme decrease of interest rates took place between YE 2007 and
YE 2008 (-2.15%). This event falls within the stress based on the MA(1) model,
but does not fall within the stress based on the Random Walk.

Conclusions

In Example 2, we found a value of ρ = 0.37 for the autocorrelation parame-
ter in monthly swap rates. Therefore, the effects shown in Figure 2 (ρ = 0.3)
correspond to realistic parameter values. Neglecting autocorrelation in the resid-
uals can therefore lead to an increase in the probability of finding an extreme
event by a factor 3. This is a significant effect. Therefore, the possible pitfall of
neglecting autocorrelation in residuals is of practical relevance.
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Figure 4: Yearly changes in 1-year swap rates, compared to 1-in-200 year stresses
based on a Random Walk model and an MA(1) model. Changes in monthly
1-year swap rates experience autocorrelation (ρ = 0.37). Neglecting this au-
tocorrelation results in an underestimation of the yearly 1-in-200 stress. If
autocorrelation is modelled explicitly, the model captures all historic stresses
between year-ends. This example shows the practical relevance of the theoreti-
cally computed effects in Fig. 2 and Fig. 3.

3 Misspecification: Wrong distribution errors

In this section, we will investigate the effect of a misspecification of the dis-
tribution of errors. A wrong choice of the distribution of errors is a possible
source of an under- or overestimation of a Value-at-Risk. Often, normality of
errors is assumed. In practice, distributions of observed errors often have heavy
tails, compared to a normal distribution. If this is neglected, and normality is
assumed, risk can be underestimated. A well known example of a distribution
with heavy tails is the Student-t distribution. If data is normally distributed,
and the sample size of the data is small, the mean can be shown to be Student-t
distributed. This distribution is therefore used to perform a t-test, to test if
a parameter significantly differs from some predetermined value. Due to the
heavy-tailed property of this distribution, the Student-t distribution is often
used in practice to model heavy-tailed data. In this section, we will assume a
yearly stress follows a Student-t distribution (the data generating process), but
the stress is modeled by a normal distribution instead.

Assume a yearly stress follows a Student-t distribution with mean zero and
ν degrees of freedom. The standard deviation of the stress is then equal to:

σν =

√
ν

ν − 2
(8)

The parameter ν determines the heaviness of the tails. A low value of ν corre-
sponds to heavy tails. If ν approaches infinity, the distribution converges to a
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normal distribution.

Now, assume we model the stress by a normal distribution with the same stan-
dard deviation σν , and mean zero. We consider the confidence level α. The
stress we will propose, based on the incorrect assumption of a normal distribu-
tion, is σνΦ

−1(α). The probability p of observing a stress event under the true
Student-t distribution is:

T−1(p, ν) = σνΦ
−1(α)

p = T (σνΦ
−1(α), ν) (9)

T−1(p, ν) is the inverse cumulative Student-t distribution, the equivalent of Φ−1

for the normal distribution. The relative increase R of finding an extreme event
in n years of data (assuming independence of the yearly errors) equals:

R =
1− (1− p)n

1− (1− α)n
(10)

Example

Assume ν = 5, n = 1 and α = 0.005. The standard deviation of the Student-t
distribution equals:

σν =

√
5

5− 2
≈ 1.29. (11)

The calibrated 1-in-200 stress, based on the normal distribution is
σνΦ

−1(0.005) ≈ −3.32.
The probability of finding an extreme event, based on the true Student-t dis-
tribution equals T (1.29 · Φ−1(0.005), 5) ≈ 1.04%. This is a relative increase of
R = 1.04%

0.5% ≈ 2.09.

In Figure 5, the probability density of the normal distribution and of the
Student-t distribution with five degrees of freedom are plotted. We can see
that the probability density of the Student-t distribution is higher in the tail.
Therefore, the probability of finding an event larger than the stress (-3.32 in the
example) is higher.

In Figure 6 we can see that the effect of erroneously assuming normality is
higher for lower degrees of freedom of the Student-t distribution, and that the
effect if higher for more extreme confidence intervals. A lower degree of freedom
corresponds to fatter tails. In the limit of ν → ∞, the Student-t distribution
converges to a normal distribution, and the effect vanishes.
If the confidence interval is set to 10%, assuming a normal distribution can lead
to an overestimation of the stress. This is caused by the fact that the Student-t
distribution has fatter tails, but the probability density is also more peaked.
As we can see in Figure 5, there is a range where the density of the normal
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Figure 5: Probability density of a normal distribution and a Student-t distri-
bution with 5 degrees of freedom, both with a standard deviation of 1.29. The
tails of the Student-t distribution contain more probability mass compared to
the normal distribution.

distribution is higher. In the case of α = 10%, this effect is more important
than the higher mass of the Student-t distribution in the tails.

Figure 6: Relative increase R in probability of finding an extreme event if
data is generated by a Student-t distribution, but analyzed as if the errors are
normally distributed, for confidence intervals 0.5%, 2.5% and 10%. If the heavy
tails are neglected, the probability of finding an extreme event can increases
with a factor 2 for α = 0.5% . Since there is less probability mass in the middle
of the Student-t distribution, a ratio smaller than one is found for α = 10%.
Therefore, neglecting heavy tailedness of a distribution of errors can lead both to
an underestimation and overestimation of stress. The case n = 1 (one Student-t
distributed yearly error) and n = 30 (30 Student-t distributed yearly errors) are
considered. The value of n has a limited effect on the results.
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The above analysis is based on one Student-t distributed variable. It is also
interesting to investigate the effect if monthly, or quarterly data is considered,
and the error is scaled up to a yearly stress. To investigate this, we simulated
a series of Student-t distributed variables. We computed the variance of the
errors, and scaled up this variance by a factor k. For independent, identically
distributed normally distributed variables, the square root of time can be applied
to scale up the standard deviation. Then, we computed non-overlapping sums of
k random Student-t variables. We computed the probability of finding a value
more extreme than the 1-in-200 stress based on the scaled up variance. This
results in a factor R. In the graph we can see the effect of different values of k,
and different degrees of freedom of the Student-t distribution. The case k = 1
corresponds to the analysis above. We see that again, the effect decreases when
the number of degrees of freedom increases, because a lower degree of freedom
corresponds to more heavy tails. Further, we see that the effect decreases with
increasing k. This is interesting. If Student-t distributed variables are summed,
the heavy tails partly vanish, and the resulting distribution will become more
close to a normal distribution.

Figure 7: Relative increase R in probability of finding an extreme event (α =
0.5%) if data is generated by a Student-t distribution, but analyzed as if the
errors are normally distributed. In contrast to Fig. 6, the data now consists of
k Student-t distributed errors. Under the assumption of normality, the square
root of time rule is used to scale up the variance. The effect of neglecting the
heavy tails of the Student-t distributed errors decreases with increasing degrees
of freedom, since the Student-t distribution converges to a normal distribution
for infinite d.o.f. The effect decreases with increasing k.

Assuming a normal distribution, while the data is Student-t distributed, can lead
to an underestimation of the stress. The probability of finding an extreme event
can increase with a factor of more than 2. If a longer data series is backtested,
for example 30 years, the effect is only significant if one is interested in severe
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stresses, for example the stress corresponding to a confidence level of 0.5%. For
less severe stresses, like the 2.5% confidence level, the effect is limited. If the
sum of Student-t variables is considered, the effect of the heavy tails decreases.
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4 Misspecification: Neglecting clustered volatil-
ity of residuals

In this section, we investigate the effect of neglecting clustered volatility. First,
we will theoretically derive the effect of neglecting clustered volatility if data is
generated by GARCH(1,1) model, but is assumed to be generated by a Random
Walk. Then, we will consider the practical relevance of this pitfall, by quanti-
fying the effect for realistic parameter values.

In time series models, it is often assumed that the volatility of the errors is
constant (homoscedasticity). In practice, this is often not the case. When a
large shock has occurred, for example a large movement in a stock market in-
dex, it can be more likely that in the next time step, again a large movement
will occur. The family of GARCH models is a class of models that incorpo-
rates this effect. In a GARCH model, the volatility of an error depends on the
volatility and realized error of previous time steps. Periods of low volatility can
be followed by periods with higher volatility. If one neglects this effect, stress
can be underestimated. In this section we will quantify this effect for GARCH
models. We will investigate a GARCH(1,1) model. In a GARCH(p,q) model,
the volatility of an error depends on the error and volatility of the previous p
and q time steps. We choose to assume the most basic GARCH model, in which
the volatility is only related to the error and volatility of the previous time step.
The specification of the GARCH(1,1) model is as follows:

yt = yt−1 + ϵt

ϵt = σtzt

zt ∼ N(0, 1)

σ2
t = α0 + α1ϵ

2
t−1 + β1σ

2
t−1 (12)

The long term expected volatility of y equals:

E(σ2
t ) =

α0

1− α1 − β1
(13)

Therefore, we will only consider combinations of parameters where α1+β1 < 1.

The distribution of the errors of a Garch(1,1) model is leptokurtic (heavy tailed).
Heavy tails can also cause underestimation of stress, as we have shown in Sec-
tion 3. If data is Student-t distributed (which is heavy tailed), but the data is
treated as if it is normally distributed, this can lead to an increase in the prob-
ability of finding an extreme event by a factor 2. Therefore, when analyzing the
effect of neglecting clustered volatility, we will have to investigate which part
of the effect is caused by the leptokurtic property of the errors, and which part
results from the clustered volatility itself.
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Figure 8: 500 Randomly generated numbers from a normal distribution and a
GARCH distribution (α1 = 0.8, β1 = 0.1).

We used the statistical program R to simulate a GARCH(1,1) process. The
modeling process is graphically shown in Figure 9. We considered k steps per
year, and simulated N = 1.000.000 years. For every year n, we simulated a set
of k GARCH errors ϵn,i. We computed the variance σ2 of the errors, and scaled
up the variance with a factor k to naively predict the yearly stress. We summed
up k errors per year, and evaluated how often this value exceeded the 1-in-200
stress based on the scaled variance (assuming independent normally distributed
errors). This results in an estimate for the probability of finding an event more
extreme than the proposed stress:

p =
1

N

N∑
n=1

1

{ k∑
j=1

ϵn,j > σ
√
kΦ−1(1− α)

}
. (14)

Then, the ratio between the probability p, and the confidence level α is com-
puted:

R =
p

α
. (15)

If R > 1, the yearly stress is underestimated. The code used can be found in
Appendix C.

In Table 2, results are shown for k = 12 and different values of α1 and β1.
The relative factor R is shown. For α1 = 0, there is no effect. If α1 = 0, the
volatility of the error only depends on the volatility of the previous error, and
does not depend on the realized error of the previous time step. Therefore, the
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Figure 9: Modeling process performed in R.

process is deterministic, and will converge to a situation where the standard
deviation is fixed and equal to σ2

t = α0

1−β1
. The GARCH process reduces to a

Random Walk with independent normally distributed errors. If α1 ̸= 0, both
α1 and β1 have an increasing effect on the probability of finding an extreme
event. If α1 increases further, R decreases. The relative factor R is graphically
shown in Figure 10, for k = 12 (monthly data), and k = 4 (quarterly data). The
maximum effect we find is of order two. The effect for k = 4 is slightly larger
than the effect for k = 12.
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Figure 10: Effect of different specified GARCH(1,1) models on the probability
of finding a 1-in-200 event over a one year horizon. The relative increase in
probability R is shown. Parameter β1 has an increasing effect on the probability
of finding an extreme effect, a higher value of α1 has an increasing effect, but
the effect decreases if α1 rises further. The effect can partly be explained by
the leptokurtic property of the GARCH-errors. The graph shows the effect for
monthly errors (k = 12, upper graphs), and quarterly errors (k = 4, lower
graphs) seen from two different angles. Effects for k = 4 are slightly larger.

The effect of the heavy tails of the distribution

As we have seen in Section 3, an underestimation of stress can also be caused
by heavy tailedness of the distribution of errors. To estimate which part of the
underestimation is caused by the leptokurtic property of the GARCH errors, we
assume the errors are Student-t distributed, and use the results of Section 3.

If α1 = 0.4, β1 = 0.1 and k = 12, we find a relative factor of 2. The kurtosis
of the simulated GARCH errors is equal to 68. If we assume that the errors
are Student-t distributed, this corresponds to a number of degrees of freedom
slightly above 4. For k=12, and 4 degrees of freedom, the effect of the heavy
tails of the Student-t distribution corresponds to a factor 1.41. (see Section 3)
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α1

β1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 1.00 1.12 1.25 1.39 1.57 1.76 1.89 1.94 1.86 1.60
0.1 1.00 1.13 1.27 1.44 1.65 1.84 1.96 1.96 1.72
0.2 1.00 1.14 1.30 1.50 1.73 1.93 2.01 1.84
0.3 1.00 1.16 1.35 1.59 1.85 2.05 1.94
0.4 1.00 1.18 1.41 1.70 2.00 2.04
0.5 1.00 1.22 1.50 1.88 2.13
0.6 1.00 1.26 1.65 2.11
0.7 1.00 1.34 1.93
0.8 1.00 1.51
0.9 1.00

Table 2: Underlying numbers of Figure 10, for k = 12 (upper part of the figure).

If α1 = 0.6, β1 = 0 and k = 12, we find a relative factor of 1.89. The kur-
tosis of the simulated GARCH errors is equal to 12.5. If we assume that the
errors are Student-t distributed, this corresponds to 4.5 degrees of freedom. For
k=12, and 4.5 degrees of freedom, the effect of the heavy tails of the Student-t
distribution corresponds to a factor of 1.33.

We see that the heavy tails of the distribution of the errors explain approxi-
mately 40% of the increased probability of finding a 1-in-200 event. Since the
maximum factor R is of order two, the effect of clustered volatility is significant,
but clearly lower than the effect of neglecting autocorrelation in the residuals
we found in Section 2.

Realistic parameter values
On page 129 of the Handbook of Financial Time Series [8], a GARCH(1,1) model
has been fitted on monthly and daily Microsoft and S&P data. The parameters
found are all around 0.1 for α and around 0.9 for β. Based on our results, for
these parameter values, scaling up the monthly errors by the square root of time
can lead to an increase in the probability of finding an extreme event by a factor
around 1.5. As we have shown, part of this effect is caused by the leptokurtic
property of the errors. For these realistic parameter values, the effect of neglect-
ing volatility is significant. However, the effect is small compared to the effect
of neglecting autocorrelation in the residuals we found in Section 2. There, we
found a factor 3 for realistic parameter values.
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5 Misspecification: The use of the square root
of time rule for a Jump Diffusion process

The geometric Brownian motion is a well known and commonly used stochastic
process. The famous Black-Scholes-Merton model assumes stock returns follow
a Brownian motion, and uses this assumption to price for example equity op-
tions. Given a certain period in time, the stock return between time 0 and time
t is normally distributed with a standard deviation proportional to the square
root of t. Therefore, the distribution of the returns is symmetric. In practice,
one often observes that the distribution of returns is not symmetric, and once
in a while, an equity index crashes. To describe this non-symmetric and heavy
tailed behaviour, Merton [9] introduced a model that adds an extra term to the
geometric Brownian motion. He assumes that once in a while a jump occurs.
Jumps are Poisson distributed, and if a jump occurs, the index decreases by a
certain percentage.

In this section, we will analyze the impact of scaling up the Value-at-Risk of a
time variable following a Jump Diffusion process by the square root of time rule.
Work has been performed on this subject by Danielsson e.a [4]. This article fo-
cuses on a time scale inspired by the Basel regulations for banks. The effect is
investigated of scaling up a 1-day VaR to a 10-day VaR by the square root of
time rule. We will take this article as a starting point, and first we will repro-
duce their results for this time scale. Then, we will investigate the impact if a
monthly VaR is scaled up to a yearly VaR, since this timescale is more relevant
for Solvency II. We will see that the change to a longer time scale significantly
changes the results. We will identify three different ranges of jump frequencies,
all with their own characteristic behavior. At the end of this section, we will
consider realistic parameter values.

In previous sections, we computed ratios between probabilities of finding an
extreme event. In this section we will compute ratios of Value-at-Risk, to be
able to make a comparison with the results in the article of Danielsson e.a.

The Jump Diffusion model has been studied intensively in many papers. Kou
[10] has extended the original model of Merton, such that it contains both up-
ward and downward jumps, to model option prices. We use the specification
of the Jump Diffusion model as presented in [4]. There, the Jump Diffusion
process is specificated in its most basic form. The size of a jump, if it occurs, is
fixed by the parameter δ, without a random term added to it:

dyt =
(
µ+

1

2
σ2

)
ytdt+ σytdWt − (1− δ)ytdqt. (16)

Parameter µ represents a drift term, σ equals the standard deviation of the
underlying Brownian motion Wt, and (1− δ) is the fraction of y that is “lost” if
a crash occurs. The Poisson process dqt has value 1 with probability λdt and is

26



zero otherwise. If δ = 1 or λ = 0, the process reduces to a geometric Brownian
motion. The value of yT given yt equals:

yT = yte
µ(T−t)+σ(WT−Wt)δqT−qt . (17)

Defining x = log(y), and given a random realization of the Brownian Motion
(Rnormal(0, σ

2∆t)) and the Poisson process (Rpoisson(∆t, λ)), the stress over a
time period ∆t equals:

x(t)− x(t−∆t) = µ∆t+ σRnormal(0, σ
2∆t) +Rpoisson(∆t, λ) log(δ). (18)

Using this equation, we can simulate daily (monthly) returns in groups of 10 days
(12 months). Adding up those groups, we can compute an approximation of the
1 day (1 month) and 10 day (12 month) Value-at-Risk at a certain confidence
level α. We will compare the 10 day (12 month) VaR with the 1 day (1 month)
VaR scaled up with the square root of time. Then, we can see wether the
square root of time rule underestimates or overestimates the VaR. We compute
the ratio between the VaR’s, analogous to the article of Danielsson:

ratio =
V aRα(kη)√
kV aRα(η)

, (19)

where η equals 1 day (1 month), and k = 10 (k = 12). Simulations and compu-
tations are performed in the statistical program R. The code used can be found
in Appendix C.

The results of the simulations can be found in Figure 11 and Table 3 and Ta-
ble 4. The left graph of Figure 11 is based on the parameters of the article of
Danielsson. We find similar results, the effects are small. The square root of
time rule can lead to a small underestimation of the risk. The effect increases
when the frequency of the jumps increases. The frequency of the jumps is low
compared to the time scale: the average time between two jumps is typically
in the order of tens of years. The time scale considered is 1 to 10 days. The
probability that a jump will occur within those days is low compared to the
confidence interval of α = 0.01.

If we consider the second graph in Figure 11, and Table 3, we see different
behavior. We have considered average times between jumps in the order of
tens of years, and also 200 and 400 years, to explore limiting behavior. The
confidence interval is set to α = 0.005, consistent with the Solvency II frame-
work. We scaled up the monthly simulated VaR by a factor

√
12, and compared

it with the simulated yearly VaR. We see that for high jump frequencies, the
square root of time rule overestimates the VaR, for intermediate frequencies it
is underestimated, and then, for lower frequencies, the effect fades away. Fur-
thermore, for this Solvency II time scale, effects are more extreme than for the
Basel inspired time scale. We will consider the three regimes and their behavior
separately.
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High jump frequencies

If the jump frequency is high, for example 1/λ = 10 years, the yearly VaR
is overestimated. This can be explained as follows.
If δ is smaller than one, the size of the jump is typically much higher than the
size of a deviation caused by the Brownian motion. The probability a jump
will occur within 1 month is approximately 1/120, and falls within the 1-in-200
event considered. If we scale up this stress by using the square root of time rule,
this results in a yearly stress of (1− exp(log(d)

√
12)).

The probability that 1 jump occurs within 1 year, and the probability that
2 jumps occur within 1 year, both fall within the confidence interval considered.
Therefore, if d is small and dominates the 1-in-200 stress, the yearly stress is
approximately (1 − d2). Therefore, the ratio between the VaR’s (defined in
equation 19) is approximately:

ratio ≈ (1− d2)

1− exp(log(d)
√
12)

. (20)

For small values of d, this results in a number close to one. Both on a monthly
basis and on a yearly basis, the stress will be approximately 100%, and there-
fore they are almost equal. For intermediate regions of d, this will lead to a
number smaller than one, and therefore, the yearly stress is overestimated. As
d approaches 1, the jump size is small compared to the variation caused by the
ordinary geometric Brownian motion. Therefore, the process is dominated by
the ordinary geometric Brownian motion, for which the square root of time rule
is appropriate, and the ratio between the VaR’s converges to 1.

Intermediate jump frequencies

For intermediate frequencies, for example 1/λ = 30 years, the probability of
a jump falls outside the monthly VaR, but inside the yearly VaR. Therefore,
the monthly VaR is dominated by the geometric Brownian motion. When this
stress is scaled up by the square root of time rule, it results in a yearly stress
of 1 − exp(−σ

√
12Φ−1(0.995)). For small d, the yearly VaR is dominated by

the jump, and is approximately 1 − d. Therefore, for small d the ratio will be
approximately:

ratio ≈ 1− d

1− exp(−σ
√
(12)Φ−1(0.995))

. (21)

This results in a ratio larger than 1, and therefore the VaR is underestimated
by the square root of time rule.

Low jump frequencies

If the frequency of the jumps is very low, for example 1/λ = 400 years, the
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Table 3: Scaling up a monthly VaR to a yearly VaR: Results for α = 0.005,
σ = 0.15/

√
12, µ = 0, and k = 12. Underlying numbers of Fig. 11.

δ
1/λ 0.01 0.2 0.4 0.6 0.8 1

10 0.99 0.87 0.77 0.70 0.76 1.00
12 0.99 0.86 0.74 0.68 0.78 1.00
15 0.99 0.85 0.73 0.67 0.84 1.00
17 2.33 1.98 1.61 1.23 0.92 1.00
20 2.64 2.23 1.80 1.37 0.97 1.00
30 2.86 2.39 1.90 1.42 1.01 1.00
50 2.97 2.45 1.92 1.38 1.01 1.00
200 1.40 1.40 1.34 1.10 1.00 1.00
400 1.07 1.07 1.07 1.04 1.00 1.00
∞ 1.00 1.00 1.00 1.00 1.00 1.00

Table 4: Scaling up a 1-day VaR to a 10-day VaR: Results for α = 0.01, σ =
0.15/

√
250, µ = 0, and k = 10. Underlying numbers of Fig. 11.

δ
1/λ 0.01 0.2 0.4 0.6 0.8 0.83 0.86 0.89 0.92 0.95 0.98 1.0

10 1.07 1.07 1.07 1.07 1.07 1.06 1.06 1.06 1.04 1.01 1.00 1.00
20 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.00 1.00 1.00
30 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.00 1.00 1.00
50 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.00
∞ 1.00 1.010 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

probability of a jump falls both outside the 1-in-200 event on a monthly and
on a yearly basis. This is comparable with the situation investigated by [4],
where a 1-day VaR is scaled up to a 10-day VaR, and 1/λ is in the order of
tens of years. Therefore, the influence of the jumps is small, and only small
underestimations of the yearly VaR are found.

Realistic parameter values

The question rises which parameter values are realistic. Andersen and An-
dreasen [11] have calibrated a Jump Diffusion model on options on the S&P 500
index, and found a jump frequency of approximately once per 11 years. The
parameter δ can be deducted from other calibrated parameters and is approxi-
mately 0.45. He et. al. [12] have performed a similar analysis and found similar
results. Scott [13] has calibrated a Jump Diffusion model on the S&P 500 index
itself, and found a jump frequency of approximately once per 15 years. The
parameter δ also has to be deducted from other parameters, and is approxi-
mately 0.85. This value is higher than the value calibrated on option prices,
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Figure 11: The ratio between the true VaR of a Jump Diffusion process, and
the VaR obtained by scaling up the VaR of a shorter time horizon by the square
root of time rule. If the ratio is larger than one, the VaR is underestimated by
the square root of time rule. Parameter α represents the confidence level, k the
number of steps of scaling, and σ equals the standard deviation of the underlying
Brownian Motion of the Jump Diffusion process. Parameter µ represents the
drift of the Brownian motion, δ the loss if a jump occurs, and 1/λ the frequency
of the jumps. Up: Results for α = 0.01, σ = 0.15/

√
250, µ = 0, and k = 10.

Scaling up the VaR from 1 to 10 days can lead to an underestimation of the
VaR, but effects are small. Down: Results for α = 0.005, σ = 0.15/

√
12, µ = 0,

and k = 12. Scaling up the monthly VaR to a yearly VaR can both lead to
an under- and overestimation of the VaR. Differences are caused by the relative
size of the time scale considered compared to the frequency of the jumps. We
can distinguish three regimes, if the VaR is scaled from timescale t1 to a longer
timescale t2. The jumps can significantly influences both t1 and t2 (high jump
frequencies), only t2 (intermediate jump frequencies), or none of the two (low
jump frequencies). In the upper graph, we only see the regime of low jump
frequencies. In the lower graph, we see all three regimes.
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and therefore corresponds to a lower average jump size.

A jump frequency of 1/λ = 11 years and δ = 0.45 leads to an overestima-
tion of the yearly VaR by a approximately 33% (i.e. a ratio of approximately
0.75). If 1/λ = 15 years, it is close to the border between the regime of high
frequencies and the regime of intermediate frequencies. Therefore, realistic pa-
rameter values can result both in an underestimation and an overestimation of
the stress. The size of the effect can be substantial. Therefore, the practical
relevance of this phenomena is high. If a Jump Diffusion model is used to de-
termine a one year stress for equity indices, this model should be calibrated on
yearly data instead of weekly or monthly data, to prevent a modeling error that
results in an incorrect stress.
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6 Misinterpretation: Backtesting with a rolling
window

6.1 Introduction

In previous sections, we have investigated the effect of misspecifications of VaR
models. In this section, we treat a misinterpretation, namely backtesting with
a rolling window.

If a model is backtested, historical stress events are compared with a proposed
stress. For example, if a decline of the market value of equity of 40% is proposed
as a 1-in-200 stress event over a one year horizon, one can backtest this stress
by computing historic declines of equity indices such as the MSCI World index.
If non-overlapping yearly returns are evaluated, on average, only once every 200
year such a stress may occur. If significantly more events have occurred, the
stress parameter does not correspond to a 99.5 % Value-at-Risk, and a higher
stress should be used.

Figure 12: Up: Backtesting with a fixed window. Only non-overlapping yearly
interval are considered. Down: Backtesting with a rolling quarterly window.
The yearly events considered overlap each other.

In order to backtest a model by this rule of thumb (a 1-in-200 stress may oc-
cur on average only once per 200 year), a long history of observations must be
available, and we have to compare non-overlapping yearly events with a pro-
posed stress parameter. For example, if we want to backtest an equity stress
parameter, we can choose to use returns between year ends, which are all non-
overlapping. Since we are interested in a 99.5% stress, we need a multiple of 200
years of data, for example 2000 years, or even 20000 years of data. In practice,
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only a limited amount of data is available. For equity markets, around 200 years
of data may be available, and other markets, like the market for inflation linked
swaps, are much younger. Since a limited amount of data is available, often not
only non-overlapping historic event are evaluated, but also overlapping yearly
events, by using a rolling window. For example, the stress between January
1993 and January 1994, and the stress between March 1993 and March 1994
are evaluated. A rolling window is used in stead of a fixed window. The dif-
ference between those two approaches is graphically shown in Figure 12. Using
a rolling window increases the probability to find an event more extreme than
some proposed stress. It is possible an event occurs between March and March,
which we would not have noticed if we had only considered events between year
ends. Therefore, the rule of thumb does not apply for backtests based on a
rolling window. One should account for the fact that the probability of finding
an extreme event increases by the use of the rolling window.

If data sets are very long, it is intuitively clear that more extreme events will be
found if yearly stresses for all months are evaluated, instead of only end-of-year
stresses. If a data set is sufficiently large, the number of extreme events found
will approximately increase by a factor 12. For shorter data sets, this rule does
not apply, and intuition often fails. Often, intuition tells people that in a limited
data set, for example 30 years, no 1-in-200 event may occur, even if a rolling
window is used. If nevertheless an extreme event has occurred, they conclude
the proposed stress parameter must be too low. They apply the rule of thumb
without correcting for the use of a rolling window. However, it may be well
possible that if they had taken into account the effect of the rolling window,
the conclusion would be that it is not unlikely to find an extreme event in 30
years of data. Next to that, a rolling window is often used for shorter data
sets, to increase the number of observations. Therefore, the effect of the rolling
window is particularly relevant for data sets which are short compared to the
time horizon and significance level of the stress parameter. If a data set of 30
years is used to evaluate a 1-in-200 year stress, it is likely a rolling window will
be used. If a data set of 30 years is used to evaluate a 1-in-10 day event, it is
more likely non-overlapping periods are used.

In this section, we quantify the possible impact of neglecting the use of a rolling
window for two basic time series models, the Random Walk and the AR(1)
model. We will also propose a method to correct for the effect of the rolling
window, and will provide a step by step manual for correctly backtesting with
a rolling window. We will use this method to backtest equity stress parameters
for the MSCI World and S&P index. We will illustrate the practical relevance
of this phenomena by analyzing an example of a backtest for an equity stress
parameter for Dutch pension funds. In an official evaluation report, the rule
of thumb (a 1-in-200 stress may occur on average only once per 200 year) is
applied, without correcting for the use of a rolling window.
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6.2 The model

To investigate the possible effect of backtesting with a rolling window without
correcting for it, we will investigate an AR(1) model. Since this is a basic model,
it enables us to focus on the effect of the rolling window in its most basic form.
We assume data generated by the AR(1) process covers n years, and each year
consists of k steps. For example, if monthly data is used k will be equal to twelve.

The AR(1) model has the following specification, which is iterated k times (k
time steps corresponds to a period of one year):

yt = ak · yt−1 + ϵt ∼ N(0, σ2
k)

= akk · yt−k +
k−1∑
j=0

aj · ϵt−j (22)

To be able to compare results for different values of k, we choose ak such that
the conditional expectation of y over a one year horizon is independent of k.

E(yt|yt−k) = akk · yt−k

ak = a1/k (23)

We choose the standard deviation of the errors σk such that the variance of y
over a one year horizon is equal to 1.

V ar(yt|yt−k) = σ2
k ·

1− a2kk
1− a2k

= σ2
k ·

1− a2

1− a2/k
= 1

σ2
k =

1− a2/k

1− a2
(24)

In the case of a random walk, a = 1, and the variance of the errors is equal to 1
k .

In next sections, we will use this model to compute the probability of finding at
least one extreme event if a rolling window is used. First, we will treat a special
case of the AR(1) model, the Random Walk, and then we will treat the AR(1)
process itself.

6.3 Random Walk

In this section, we will compute the probability of finding at least one extreme
event if a rolling window is used. This probability will depend on the length of
the data set n (in years), the frequency of the data k and the significance level
of the stress α.

In the case of a Random Walk, the model specified in Section 6.2 reduces to:
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yt = yt−1 + ϵt ∼ N
(
0,

1

k

)
. (25)

The variance on a yearly basis is equal to 1. We now compute the distribution
of observed yearly stresses Sn:

St = yn − E(yt|yt−k) = ϵt + ϵt−1 + ...+ ϵt−k+1 (26)

Since all errors are independent and identically distributed with variance 1
k , the

expectation of S is equal to zero, and the variance of S is equal to 1, like we
demanded. However, since we consider a rolling horizon, the stresses itself are
not independent.

St+1 = St − ϵt−k + ϵt+1 (27)

The covariance structure between two stresses can be computed as follows:

Cov(St, St−x) = E(St · St−x)

= E((ϵt + ...+ ϵt−k+1) · (ϵt−x + ...+ ϵt−x−k+1))

=

{ |k−x|
k |x| < k
0 otherwise

(28)

If x is larger than, or equal to k, the stresses are based on non-overlapping time
periods, and therefore, the covariance between the stresses is equal to zero. The
variance of the stresses is equal to one (x = 0). The covariance is largest for
x = 1, because this corresponds to the largest possible overlap in time periods.
If x increases, the overlapping between the periods in time the stresses are
based on will decrease, and therefore the covariance will also decrease. Using
this expression, the covariance matrix of a series St equals:

Σ =
1

k



k k − 1 ... 2 1 0 0 0
k − 1 k k − 1 ... 2 1 0 0
k − 2 k − 1 k 2 1 0
... k 2 1
1 k
0 1 k
0 0 1 k
0 0 0 1 k


(29)

Now we can compute the probability of finding at least one stress higher than
some threshold. Since the errors are normally distributed with a standard devi-
ation of one, the VaR over a one year horizon simple corresponds to the inverse
cumulative normal distribution evaluated at confidence level α. We consider the
Solvency II treshhold tr (α = 0.005):

tr = Φ−1(0.005) ≈ −2.57. (30)

If we consider n years of data and k timesteps in a year, there are (n − 1)k
observed stresses. We define P (n, k) as the probability of finding at least one
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stress more extreme then the threshhold. This probability can be written as
the integral over a multivariate normal distribution with the covariance matrix
specified above.

P (n, k) = P (∃n ∈ {k + 1, ..., y · k}|Sn < tr)

= 1− P (̸ ∃n ∈ {k + 1, ..., y · k}|Sn < tr)

= 1−
∫ ∞

x1=tr

...

∫ ∞

x(y−1)k=tr

N(0,Σ)dx1..dx(y−1)k

N(0,Σ) =
1√

2π(y−1)k|Σ|
e−

1
2 (x1..x(y−1)k)

′Σ−1(x1..x(y−1)k) (31)

In the special case of k = 1 (backtesting with a fixed window), all stresses are
independent, and the covariance matrix reduces to the identity matrix. In this
case, the probability of finding an extreme event can be computed easily:

P (n, k = 1) = 1− 0.995y−1. (32)

In Figure 13, the results are shown for different values of k and n. These results
are based on simulations in Scilab, and verified in R by computing the integral
over the multivariate normal distribution (equation 31).
The figure shows both the absolute probability of finding an extreme event, and
the relative probability, compared to the case k = 1.

R(n, k) =
P (n, k)

P (n, k = 1)
(33)

We see that if a rolling window is used, the probability of finding a 1-in-200
event can increase with a factor of more than 4.5. For example, as we can see
in Figure 13, if 30 years of data is used, the probability of finding a 1-in-200
event based on a fixed horizon (k = 1, n = 30) is equal to 0.14. This probability
increases to 0.48 if a rolling window on a monthly basis (k = 12, n = 30) is
used. As expected, the effect increases with increasing k.
The relative effect of the rolling horizon increases if n decreases. This if intu-
itively clear. If a longer data set is used, the probability of finding an extreme
event is higher, and can increase less. For example, if 100 years of data is used,
the probability of finding a 1-in-200 event is already 0.4, and cannot increase as
much as when n = 30. As we have mentioned before, the effect of the rolling
horizon is particularly important if the length of the data set is short compared
to the time horizon and significance level of the stress parameter (in this case,
200 years).

6.4 AR(1)

For general values of a, the AR(1) model is specified as follows:

yt = a1/kyt−1 + ϵt ∼ N(0,
1− a2/k

1− a2
) (34)
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Figure 13: Up: Probability of finding an event more extreme than the proposed
VaR at α = 0.005, when a rolling window is used instead of a fixed window.
Down: Relative increase in probability R. Using a rolling window increases the
probability of finding an extreme event. The size of the effect increases as the
length of the data (n years) considered decreases. Increasing the number of data
points k used in a year also increases the effect.

Again, by construction, the variance over a horizon of one year is equal to
one. We will follow the same procedure as we did for the Random Walk. The
observed stress St depends on an observed stress at some other time, if they are

37



based on overlapping time periods.

St = yt − E(yt|yt−k) = ϵt + a1/kϵt−1 + ...+ a(k−1)/k)ϵt−k+1 (35)

The covariance structure between two stresses is equal to:

Cov(St, St−x) = E(St · St−x)

=

k−x−1∑
j=0

a(x+2j)/k · 1− a2/k

1− a2
, |x| < k

=

{
ax/k · 1−a2(k−x)/k

1−a2 |x| < k

0 otherwise
(36)

If x is larger or equal to k, the two stresses are based on independent periods
in time, and the covariance between them is zero.
In Figure 14 we can see the results for the AR(1) model based on R calculations
of integral of equation 31. In this figure, y is constant and equal to 30. We have
calculated the effect for different values of the mean reversion parameter a and
of k. The effect of the rolling window increases as k increases, as we expected.
We see that the effect of the rolling horizon increases as a decreases. This is
intuitively clear. A low value of a corresponds to a high mean reversion speed.
Therefore, the correlation between the stresses within a year is smaller. The
probability of finding an extreme event during the year, but not at the end of
the year is higher, since the stress diminished by mean reversion. If a = 0 and
k = 24, the probability of finding an extreme event increases by a factor 7.

38



Figure 14: Up: Probability of finding and event more extreme than the proposed
VaR at α = 0.005, when a rolling window is used in stead of a fixed window.
Down: Relative increase in probability R. Using a rolling window increases
the probability of finding an extreme event. The size of the effect increases as
parameter a decreases. Increasing the number of data point k used in a year
also increases the effect. Parameter n (length of the data in years) is constant
and equal to 30.

6.5 How to correctly backtest using a rolling window: A
step by step approach

In previous sections, we have quantified the error that can be made by backtest-
ing an AR(1) model using a rolling window. In this section, we will explain step
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by step how a backtest using a rolling window should be executed correctly. In
Figure 15, those steps are summarized.
If a model is backtested using a rolling window, the probability to find an ex-
treme event increases. To judge the outcome of a backtest, one has to correct for
this increased probability. We propose a method to account for this increased
probability. We propose to compute the distribution of the number of extreme
events in a given data set, taking into account the use of the rolling window,
and test whether the value of the stress parameter can be rejected by setting up
a Null-hypothesis and an alternative hypothesis. We will illustrate the steps by
assuming we want to backtest a 1-in-200 stress parameter for equity risk over a
one-year horizon. However, this method can also be applied to other risk factors
and time series.

Step 1
First, we determine which data set we will use to backtest the equity stress pa-
rameter. We determine both the length of the data (y years), and the frequency
the data, k. For example, we can use a data set of equity returns of the last 50
years. The data may be available on a quarterly basis, and we can choose to
use all available data. It may also be possible that daily data is available. Then
we can choose the frequency we want to consider. For example, we can choose
to only use end-of-month data, or quarterly data. In the first case, k = 12, in
the second case, k = 4. Note that backtesting using a rolling window is par-
ticularly of interest if the length of the data set is limited. If a large data set
is available, for example 20000 independent observations, it is not necessary to
use a rolling window. Then, k can be set to one, and the rule of thumb applies
(a 1-in-200 stress may occur on average only once per 200 year). However, for
financial time series, often a limited (relevant) historical data series is available,
and backtesting using a rolling window is desirable. We will assume y = 50 and
k = 12.

Step 2
In the second step, we determine the Null-hypothesis. We have to make an
assumption about both the value of the stress parameter, and about the data
generating process of the equity returns. For example, we can assume equity
returns follow a Random Walk, and the 1-in-200 stress corresponds to a de-
crease of 40% of the equity index over one year. The alternative hypothesis is
the hypothesis that the stress parameter is too low, and should be higher than
40%. In practice, modelling the stress parameter and backtesting is often an
integrated process. Then, the Null-hypothesis of the underlying model will be
equal to the model the stress parameter is based on. However, it is also possible
a stress parameter is based on expert judgement. Then, it will be necessary to
make an assumption about the underlying data generating process.
In this step, we also specify which confidence interval we will use to accept or
reject the value of the stress parameter. For example, we may reject the value
of the stress parameter if the p-value (to be computed in the coming steps), is
smaller than 5%.
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Figure 15: A step by step approach to correctly backtest using a rolling window.
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Step 3
In the third step, we will determine the distribution of the number of extreme
events in a data set of length y and frequency k under the Null-hypothesis. Of-
ten it will be necessary to perform simulations to find this distribution. In the
case of our Null-hypothesis (a Random Walk, and a stress parameter of 40%),
we simulate a large number of scenarios (for example 100.000). One scenario
consists of k · y point (in our case 50 · 12). We simulate 100.000 Random Walks
with a yearly standard deviation of 40%

Φ−1(0.995) , such that the 1-in-200 stress cor-

responds to -40%. For each of those scenarios, we compute k · (y − 1) realized
yearly stresses. Then we evaluate the number of realized yearly stresses that
exceed -40%. For each scenario, we find a number of extreme events. Based
on those numbers, we estimate the probability distribution of the number of
events to be found that exceed the proposed stress parameter of 40%, in 50 year
of data, which is available on a monthly basis. We denote the probability of
finding n events p(n).

Step 4
In the fourth step, we determine how often the stress parameter is exceeded
in our real data set. In our example, we compute 12 · (50 − 1) realized yearly
returns. It may be possible we find 18 yearly returns worse than -40%. We call
this number x.

Step 5
Then, we compute the p-value of finding 12 or more yearly returns worse than
-40%. We use the probability distribution determined in step 3 to do so. We
sum all probabilities corresponding to x ≥ 12.

pvalue =

n=∞∑
n=x

p(n) (37)

Step 6
In the last step we evaluate the backtest by comparing the p-value found in step
5 with the security level we have chosen in step 1. For example, if the p-value
is 3%, and we set the confidence level to 5%, we conclude the stress parameter
is too low.

The limiting case: k = 1, and yearly stresses are independent: If we
do not use a rolling window, but use yearly non-overlapping realizations, and
we assume the yearly stresses are independent, the distribution of the number
of extreme events can be computed analytically. We have y years of data, y− 1
realized errors, and we set k = 1. Since the yearly stresses are independent, the
probability of finding exactly n events more extreme than the stress parameter
under the Null-hypothesis, is Binomially distributed.

p(n) =

(
y − 1

n

)
αn · (1− α)y−1−n (38)
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The probability to find at least x events is equal to

pvalue(x) =
n=∞∑
n=x

p(n)

= 1−
n=x−1∑
n=0

p(n). (39)

In particular, the probability to find at least one event is equal to 1−(1−α)y−1,
where α is the level of security (for Solvency II, α = 0.005).

6.6 Testing the model: S&P and MSCI world equity index

We have seen that the probability of finding an extreme event increases signif-
icantly when a rolling horizon is used to backtest a model. In this section, we
will investigate whether this effect can explain the number of extreme events
in the S&P and MSCI world equity index. In particular we will investigate a
statement from an evaluation report of the FTK (Financieel Toetsings Kader,
rules for Dutch Pension Funds to determine their required capital), about the
size of the equity stress parameter of the FTK.
We will use the backtest method as outlined Section 6.5. We will assume equity
returns follow a Random Walk with drift.

6.6.1 Evaluation of the FTK

The parameter for an equity shock in the FTK corresponds to a negative eq-
uity return of 25%. Note that Pension Funds in the Netherlands should hold
a required capital corresponding to a 97.5 % Value-at-Risk measure, where the
security level of Solvency II is 99.5%. In the evaluation report, this equity stress
parameter is backtested against the MSCI World index. Data since 1970 is used.
The evaluation report states the following [14]:

“Sinds 1970 heeft deze index 4 keer een tuimeling meegemaakt die groter is dan
de 25 procent daling waar het FTK op is gestoeld. Twee van deze gebeurtenissen
vonden plaats in de afgelopen 7 jaar. De frequentie van dergelijke omvangrijke
schokken is dus hoger dan op basis van de 97,5 procent zekerheidsmaat en een
(log)normale verdeling mag worden verwacht.”

The report states that since 1970, 4 stresses higher than 25% have taken place,
of which two in the past 7 years. It concludes that this is higher than can be
expected based on the confidence level of 97.5% and a (log)normal distribu-
tion. Therefore, the equity stress parameter is rejected based on a backtest.
We will investigate this statement by performing the backtesting procedure of
Section 6.5.
We will assume equity returns follow a Random Walk with drift µ. The Null-
hypothesis assumes the 97.5% VaR corresponds to an equity return of -25%.

H0 : µ+Φ−1(0.025) · σ = −25% (40)
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We will compute the p-value corresponding to the number of extreme events
that have happened, to see whether we can reject the Null-hypothesis. We re-
ject the backtest if the p-value is smaller than 5%.
We use monthly data of the MSCI world index, downloaded from www.msci.com.
We will both consider k = 1 and k = 12, backtesting with a fixed horizon, and
with a rolling monthly horizon. To compute the p-value, we performed simu-
lations to estimate the distribution of the number of stresses that exceeds the
threshold under the Null-hypothesis. The distribution of the number of extreme
events in 40 years of data under the Null-hypothesis is plotted in Figure 16. In

Figure 16: Probability distribution of the number of extreme events found in
40 years of data, based on the proposed procedure in Section 6.5. Up: Values
for k = 1 (fixed window) have been computed analytically. Down: Values for
k = 12 (rolling window, monthly evaluation) are based on simulations.

the case of a fixed horizon, we find two equity decreases larger than 25%. (-
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Historic events worse than -25% p-value based on simulations
k=1 2 0.264
k=12 21 0.140

Table 5: Extreme events (corresponding to a decrease of more than 25%) found
in the MSCI World index. P -values are computed by the method described in
Section 6.5. P -values are higher than 5%, and therefore the Null-hypothesis, an
equity stress of 25%, is not rejected. This is in contradiction with the findings of
the evaluation report of the FTK, which is based on backtesting with a rolling
window without correcting for this.

Historic events worse than 2.5% percentile p-value based on simulations
k=1 3 0.665
k=12 43 0.442

Table 6: Extreme events found in the S&P index, α = 2.5%.

27.8% YE 1973 to YE 1974, and -42.1%, YE 2007 to YE 2008). When a rolling
window is used, 21 events are found. This corresponds to p-values of 0.264 and
0.140. Both p-values are larger than 5%. Therefore, we do not reject the Null-
hypothesis.

The conclusion of the evaluation report seems partly unfounded. It is well
possible the equity stress parameter is too low. Part of the reasoning of the
report comes from the fact that the size of the violations are very high (-42.1%
in 2008). We have only tested the number of violations, not their sizes. How-
ever, the argumentation that the equity stress parameter is too low because four
violations have taken place is not correct. If a fixed window, from year end to
year end is used, only two violations are found. If a rolling window is used, more
violations are found, which is caused by the use of this rolling window. The rule
of thumb is applied, without correcting for the use of the rolling horizon.

6.6.2 S&P index

We can perform the same analysis on the S&P index. This index is available
as of 1871. If we estimate the parameters of a Random Walk with drift for
the yearly equity returns, we find µ = 5.8% and σ = 18.9%. According to this
distribution, the 0.5% point of the distribution corresponds to a decline of the
equity index of 42.8%. The 2.5% point of the distribution corresponds to a
decline of -31.2%.

In Table 7, a typical example of the effect of the rolling horizon can be seen. The
data consists of 138 years of returns. According to the rule of thumb, maximal
one 1-in-200 event may occur in this historic data. In Figure 17, the yearly
returns are plotted, and the 0.5% and 2.5% VaR based on the fitted model are
shown. If we consider a yearly horizon, only 1 extreme event has happened.
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Historic events worse than 0.5% percentile p-value based on simulations
k=1 1 0.512
k=12 12 0.252

Table 7: Extreme events found in the S&P index, α = 0.5%.

Figure 17: Historic S&P returns

However, based on a rolling window, 12 extreme events have happened (clus-
tered around the begin of the ’30’s and the end of the ’30’s).

Naively one could think the model fails the backtest, since at two periods in
time violations have taken place, in less than 200 years of data. However, the
p-value equals 25.2%, and the Null-hypothesis cannot be rejected. The number
of violations can be explained by the fact that a rolling horizon is used. The
2.5% stress parameter also passes the backtest as can be seen in Table 6.

6.7 Conclusions on backtesting with a rolling window

Using a rolling window significantly increases the probability of finding an event
that is more extreme then some predetermined value. If a model is backtested,
a fixed window has to be used, or one has to correct for this phenomena. Using
a rolling window without correcting for this increased probability can lead to
rejecting a model on false grounds. The effect of the rolling window increases
with decreasing length of historic data that is used. We propose a method for
backtesting taking the effect of the rolling window into account. The fact that a
rolling window has been used partly explains why the FTK parameter for equity
stress has been rejected. If we backtest this parameter by taking into account
the effect of the rolling window, the parameter passes the backtest.
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Part II

Statistical pitfalls of the one-year
time horizon in Solvency II

47



7 Time horizons, probabilities of ruin and prob-
abilities of default

Solvency II focuses on a time horizon of one year. An insurance company meets
the Solvency II requirements if the own funds (market value of the assets mi-
nus market value of the liabilities) of the company are high enough to bear a
1-in-200 year loss that may occur, exactly in one year from now. Solvency II is
risk based and meant to create a level playing field for all insurance companies
in Europe. In the Netherlands, the regulatory rules for Pension Funds focuses
on different time horizons. Comparable with insurance undertakings, Pension
Funds have to show that their own funds are high enough to bear a 1 in 40 year
loss over a one year horizon. Next to that, they have to perform a continuity
analysis, which focuses on the long term (15 years). We will investigate pitfalls
that may occur by only focussing on this one year horizon in Solvency II. In
particular, we will examine the level playing field, by considering different kinds
of insurance undertakings, all with an initial Solveny II ratio of 100%. Based
on the same starting point, we will examine how the different insurance under-
takings perform at longer time horizons, compared to each other.

The effect of time horizons on optimal portfolio choice has been subject of inten-
sive research. The behavior of asset classes and the relation between different
asset classes can depend on the time horizon considered, for example caused
by mean reversion behavior of returns. Therefore, the optimal asset mix can
depend on the time horizon considered. If a certain risky asset class shows mean
reverting behavior, the risk over a longer horizon is relatively low compared to
the expected excess return. This is sometimes referred to as time diversification
of risk, or the term structure of risk [15], [16].

The vast majority of the research on time diversification of risk focuses at the
end point of the time horizon. Often, what happens within this horizon is ne-
glected. However, this within-horizon behavior can be of particular importance
for insurance companies. Liabilities need to be covered by sufficient assets at
every point in time (or, as often as official figures are reported). Next to the
risk of default at maturity, within-horizon risk arises: The risk of underfunding
at a certain point in time, although it is well possible the obligations can be met
at maturity. As M. Kritzman and D. Richm [19] conclude, end of horizon risk
diminishes with time, but within-horizon risk rises as the investment horizon
expands. They conclude this is a new challenge for research on time diversifi-
cation of risk. Due to regulatory requirements, it is necessary that insurance
undertakings also take within-horizon risk into consideration when making an
asset allocation decision. P. Devolder [17] has studied both the end-of-horizon
and within-horizon risk for long term guarantees, and concludes the one-year
horizon in Solvency II is probably not the right horizon for this kind of product.

An insurance undertaking can have different kinds of liabilities. Often, liabilities
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depend on stochastic variables like mortality rates, and can contain optionali-
ties. In the remainder of this thesis, we will assume an insurance undertaking
has a set of deterministic cashflows it has to pay at different times in future.
The customer pays an amount of money, and in return, it will receive fixed
amounts at fixed points in future. Of course, the customer wants to be as sure
as possible that the insurance undertaking will have enough assets to pay the
liabilities. Therefore, the market value of the assets and liabilities will be mon-
itored on a frequent basis. If the market value of the assets is lower than the
market value of the liabilities at a certain point in time, we will refer to this as a
ruin. However, it is well possible that the insurance undertaking recovers from
this situation, and at the time the cashflow has to be paid, it has enough assets
to do so. It is possible for an insurance company to recover from a situation
of underfunding, because the liabilities are valued at a market consistent, risk
neutral basis. In reality, the insurance undertaking can make more profit than
the risk free interest rate, for example by investing in equity. If at a certain
point in time a cashflow needs to be paid, but the undertaking does not have
enough assets to do so, we will refer to this as a default. In next sections, we
will consider both default and ruin probabilities, and we will also consider the
ruin probability after exactly one year, since this probability should be lower
than 0.5%, as demanded by the Solvency II regulations. A ruin corresponds to
within-horizon risk, a default corresponds with end-of-horizon risk.
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8 Modeling one cashflow

In this section, we will compute probabilities of default and ruin for insurances
undertakings of which the liabilities solely consist of one guarantee at maturity.
The advantage of using this simplified example is the possibility to compute
probabilities of ruin and probabilities of default analytically. The model we use
is based on [17]. We will compute probabilities of ruin and default for differ-
ent maturities N , and we will consider different investment strategies. We will
compare insurance companies which all exactly meet the Solvency requirements
at time zero. Their probabilities of default and ruin in time will differ due to
different investment strategies, and different maturities of the guarantee.

We consider a nominal guarantee at time N . The value of the liability at time
N is equal to L(N) = erN , where r is the risk free interest rate. The market
consistent value of the liability at time 0 is therefore equal to 1. Assets will
partly be invested in a riskless asset and partly in a risky asset. The return of
the riskless asset is equal to the risk free rate r. The value of the risky assets
follows a geometric Brownian Motion, with mean δ and standard deviation σ.
A proportion β (0 < β ≤ 1) is invested in the risky asset, and assets may or
may not be continuously rebalanced. Let w(t) be a standard Brownian motion.
If the assets are rebalanced, the development of the value of the assets in time
is:

A(t) = A(0)e(βδ+(1−β)r−β2σ2/2)t+βσw(t) (41)

If the assets are not rebalanced, the value of the assets in time equals:

A(t) = A(0)(1− β) · ert +A(0)β · e(δ−σ2/2)t+σw(t). (42)

We will investigate both within-horizon and end-of-horizon risk, and therefore
we are interested in the following probabilities:

• The probability of default, Pd. This is the probability that at time N ,
the assets are not sufficient to meet the obligations. This refers to end-of-
horizon risk.

• The probability of ruin, Pr. This is the probability that at some time
before N , the assets are lower than the liabilities. This refers to within-
horizon risk.

• The naive probability of default that is implied by Solvency II, Pn. This
probability is based on the presumption that companies that meet the
Solvency requirements only go bankrupt once every 200 years, and prob-
abilities of default are independent and equal to 1

200 .

In formulas, these probabilities can be written as:
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Pd = P (A(N) < L(N))

Pr = 1− P (A(t) ≥ L(t), ∀t ∈ [0, N ])

Pn = 1− αN (43)

Here, α is the level of security over a 1 year horizon, 0.995 for Solvency II.

In the following subsections we will define different asset allocation strategies.
We will compute the required Solvency II ratio, and compute the probability of
ruin and default under those different strategies, and for different time scales.
Then, we will analyze the results.

8.1 Strategies

To cover the liabilities at time t, assets A(t) will be available. The market value
of the liabilities at t = 0 is equal to 1. The assets at time t = 0 are equal to
A(0) = 1 + SC. The capital SC serves as a buffer for shocks in the value of
the risky asset. We will consider different rebalance strategies, and different
investment strategies of the SC. If the assets are rebalanced, at every point in
time the percentage β of the risky asset is the same. If the risky assets increase
more in value than the risk free assets, risky assets will be sold and riskless
assets will be bought back. If at a certain point in time, β is less than its value
at start, the opposite will happen, and extra risky assets will be bought. This
is a procyclical strategy. If we do not rebalance the assets, and we do nothing,
only at time t = 0, β is fixed, but β will vary over time, depending on the
performance of the risky asset compared to the riskless asset. Next to that, we
will distinguish between two different investment strategies for the SC. The SC
can be invested conform the other assets (a percentage β in the risky asset), or
the entire SC can be invested in the risk free asset.

We will consider four different strategies:

• Invest SC in current asset mix, rebalance assets (reb, cam)

• Invest SC in risk free asset, rebalance assets (reb, rf)

• Invest SC in current asset mix, do nothing (dn, cam)

• Invest SC in risk free asset, do nothing (dn, rf)

Now, we will compute the N-year Solvency Capital (i.e. the SC that is necessary
such that the probability that the value of the assets at time N is larger or equal
to the value of the liabilities equals 1 − α), and the probabilities of ruin and
default for the first strategy. The assets are rebalanced, and the SC is invested
in the current asset mix. To compute the probability of ruin, we will use the
law of the minimum of a geometric Brownian motion, see Appendix A. The
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derivations for the other three strategies are similar, and shown in Appendix B.
For the first strategy, the assets evaluate as follows:

A(t) = e((βδ+(1−β)r−β2σ2/2)t+βσw(t))(1 + SC) (44)

First, we will compute the N year Solvency Capital. Note that the SC required
for Solvency II corresponds to the case N = 1.

P (A(N) < L(N)) = 1− α

P (e((βδ+(1−β)r−β2σ2/2)N+βσw(N))(1 + SC) < erN ) = 1− α

P (((βδ + (1− β)r − β2σ2/2)N + βσw(N)) < log(
erN

1 + SC
) = 1− α

P (w(1) <
− log(1 + SC)− (β(δ − r) + β2σ2/2)N

βσ
√
N

) = 1− α

log(1 + SC) = −βσΦ−1(1− α)
√
N − (β(δ − r) + β2σ2/2)N (45)

In the last step, we used the fact that the standard Brownian motion at time
one, w(1), is normally distributed with mean zero and standard deviation one.
Rewriting the last expression, we obtain the following expression for the N-year
Solvency Capital:

SCreb,cam(N) = e−βσΦ−1(1−α)
√
N−(β(δ−r)−β2σ2/2)N − 1 (46)

Analogous, we can compute the probability of default at maturity:

Pd,reb,cam = P (e((βδ+(1−β)r−β2σ2/2)N+βσw(N))(1 + SC) < er)

= P (((βδ + (1− β)r − β2σ2/2)N + βσw(N)) < log(
er

1 + SC
)

= P (w(1) <
− log(1 + SC)− (β(δ − r) + β2σ2/2)N

βσ
√
N

) (47)

We obtain the following expression for the probability of default at maturity:

Pd,reb,cam = Φ
(− log(1 + SC)− (β(δ − r)− β2σ2/2)N

βσ
√
N

)
(48)

If SCreb,cam based on equation 46 is filled in into equation 48, the desired value
of 0.005 is obtained.

Now we will compute the ruin probability, given a Solvency Capital SC is in-
vested in the current asset mix.
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Pr = P (min0≤t≤N
A(t)

L(t
< 1)

= P (min0≤t≤Ne(βδ+(1−β)r−β2σ2/2)t+βσw(t) (1 + SC)

ert
< 1)

= P (min0≤t≤Ne(β(δ−r)−β2σ2/2)t+βσw(t) <
1

1 + SC
)

(49)

Using the law of the minimum of a geometric Brownian motion in Appendix A,
we obtain:

Pr,reb,cam = Φ
(− log(1 + SC)− (β(δ − r)− β2σ2/2)N

βσ
√
N

)
(50)

+
1

1 + SC

2β(δ−r)

β2σ2 −1

· Φ
(− log(1 + SC) + (β(δ − r)− β2σ2/2)N

βσ
√
N

)
. (51)

The first part of this expression corresponds to the probability of default at
maturity (end-of-horizon risk, see equation 48), the second part corresponds to
the probability of a within-horizon ruin, given there would have been no default
at maturity.

8.2 Analysis

We will analyse the results of the four different strategies, and different time
horizons. We will use parameter values r = 4%, δ = 7%, σ = 16% and β = 20%.

8.2.1 Probabilities of default and ruin

In Figure 18, the probabilities of ruin and default, and the naive default prob-
ability for the second investment strategy are plotted. Assets are continuously
rebalanced, and the value of the assets at time zero is exactly sufficient to cover
a 1-in-200 shock over a one year horizon. Therefore, the probability of default
for a one-year guarantee is exactly 0.5%. The probability of ruin for a one-year
guarantee is approximately a factor two higher. Therefore, in 1% of the cases,
at some point in time the market value of the assets is insufficient to cover the
market value of the liabilities. Only half of the time the insurance undertaking
is unable to pay out the liability at maturity (t = 1). In the other half of the
cases, the insurance undertaking recovers from the situation of underfunding.

If we also consider guarantees at other times, we see that the probability of
ruin increases substantially with time, but after a certain time, default proba-
bilities start decreasing. This is consistent with the findings in [19], where it
is concluded that end-of-horizon risk diminishes with time, but within-horizon
risk rises as the investment horizon expands. If a company meets the solvency
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Figure 18: Probabilities of ruin and default. One liability at maturity is consid-
ered, between one and 40 years from now. The ruin probability keeps increasing
with time (within-horizon risk), the default probability first increases, but de-
creases after a certain point. The gap between the ruin probability and default
probability increases with the time horizon.

requiremets, the probability of default after one year is exactly 0.5%, but after
40 years, the probability of ruin increases to 40%. We see that for maturities
shorter than twenty years, the probability that a company defaults at some time
(if measured on a continuous basis) is much larger than people expect (“Naive
probability of default”).

The large gap between the probability of default and probability of ruin for
large N implies that if measured on a continuous basis, a large number of com-
panies will go bankrupt that would have been able to meet the obligations at
maturity. The question is whether this is desirable, and if this is in contradiction
with the level playing field of Solvency II. Different insurance companies can all
start with the same solvency ratio of 100%. One expects that those companies
are equally safe. However, the probabilities of ruin and default substantially
differ, depending on the time the guarantee has to be paid.

8.2.2 N -year Solvency Capital

In Figure 19, the Solvency Capital is plotted, such that the probability of default
at time N is equal to 0.5%. All four investment strategies are considered. We see
that the investment strategy largely influences the Solvency Capital for longer
maturities. For the chosen parameter values, in general, a rebalancing strategy
requires more capital. For very long guarantees, the Solvency Capital of the
rebalancing strategies starts decreasing. This is not the case if assets are not
rebalanced.
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Figure 19: Necessary starting capital such that the probability of a default
at maturity is equal to 0.5% (one nominal guarantee at maturity N). Four
different strategies, (rebalancing yes or no, investing the SC in the current asset
mix, or risk free asset mix), are considered. The investment strategy can have
significant impact on the required N -year Solvency Capital.

8.2.3 Horizon effects in strategies

In Figure 20, probabilities of ruin and default are compared for the four different
investment strategies. If the available capital at t = 0 is exactly equal to the
required capital, the rebalance strategy leads to lower probabilities of default
and ruin. However, the initial required SC is also higher. Therefore, a solvency
ratio of 100% is “worth more” if it is based on a rebalance strategy. After ex-
actly one year, probabilities of ruin are the same, but for longer horizons, the
probability of ruin and default will be lower if assets are rebalanced.

If we start with a fixed SC of 0.1, we find horizon effects in investment strategies.
For a short time horizon, probabilities of ruin and default are larger if assets are
rebalanced, which is consistent with the higher required SC for the rebalance
strategy. However, for longer time horizons, we see interesting behavior. After
approximately 12 years, the probability of ruin and default of the rebalance
strategy is lower compared to the case where assets are not rebalanced. There-
fore, given an available capital at time 0, the optimal strategy (assuming we
want to minimize the probability of ruin and default) depends on the relevant
time horizon for the insurance company.
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Figure 20: Probabilities of ruin and default under four different investment
strategies. If the Solvency II ratio is 100% at start, a rebalancing strategy leads
to lower probabilities of ruin and default for longer time horizons, compared
to a strategy where assets are not rebalanced. If the value of the assets is
10% higher than the value of the liabilities at start, the optimal investment
strategy to minimize probabilities of default or ruin depends on the time horizon
considered.

9 Modeling different cashflow patterns

In the previous section, only one cashflow at maturity was considered. In re-
ality, an insurance undertaking can have many cashflows at many times. We
will consider two extra cashflows patterns, a constant cashflow over time, and
cashflows linearly decreasing to zero over time. We will investigate the effect
on the probabilities of ruin and default. It is very hard, if possible, to compute
this analytically. Therefore, we have used simulations, in Scilab. We assumed
again that the portfolio consists of a risk free asset and a risky asset. At every
time step, a return of the riskless asset, the risky asset, and the liabilities is
determined. The risky asset is assumed to follow a geometric Brownian mo-
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Figure 21: Three different cashflow patterns considered.

tion, and at every time step, the assets are rebalanced. If there is a payout,
it is subtracted from the value of the assets. We simulated 12 points per year
(k = 12). If at a certain time, the value of the assets becomes negative (due to
a payout), there is a default. If at a certain time, the value of the assets is less
than the value of the liabilities, there is a ruin. The code used can be found in
Appendix D.

We computed the probability of ruin and default for cashflows of 10 and 30
years (y = 10, y = 30). In the case of thirty years, the first cashflows pattern
corresponds to one cashflow at time 30. The second pattern correspond to a
constant cashflow at all points in time (30 years times 12 simulated points per
year). The last pattern corresponds to cashflows linearly decreasing to zero be-
tween time zero and 30 years. First, we performed simulations to find the start
ratio (value of assets divided by liabilities at time 0), such that the probability of
a ruin after one year equals 0.5%. Therefore, the start ratio always corresponds
to a Solvency II ratio of 100%. Note that consequently the size of the cashflows
does not influence the results.

The results of the simulations are graphically shown in Figure 22. We see that
the ruin probability and the default probability are highest for the first cash-
flow pattern, with one cashflow at maturity, followed by the constant cashflow
pattern. The probabilities of default and ruin are lowest if the cashflows are
decreasing. Simulations for 10 and 30 years give similar results. If one cashflow
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Figure 22: Probabilities of ruin, probability of ruin after exactly one year and
probability of default. The value of the assets at t = 0 is chosen such that the
ruin probability at t = 1 is 0.5%. Three different cashflows are considered. Cash-
flows which end in 10 years and in 30 years are considered. The asset portfolio
consists of a risky and risk free asset, and assets are rebalanced on a monthly
basis. The cashflows pattern has substantial influence on the probabilities of
ruin and default. One cashflow at maturity results in the highest probability
of default, followed by the constant cashflows pattern. The decreasing cashflow
pattern leads to the lowest probability of default and ruin. Therefore, insurance
companies which both have a Solvency II ratio of 100% are not equally safe over
a longer time horizon. This can have implications for the level playing field of
Solvency II.
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has to be paid in 30 years from now, the probability of ruin is higher, and the
probability of default is lower, compared to the 10 year case. This is consistent
with the analytical results of Section 8.

At first sight, it may be surprising that one cashflow at maturity results in
the highest probability of default. The duration of the liabilities for this cash-
flow pattern is longer than the duration of the other two patterns. One could
expect that since default probabilities start decreasing for longer durations, this
pattern would result in the lowest probability of default. Probably the lower
probability of default of the other two patterns is caused by the fact that at time
zero, more assets are available to cover the other cashflows. If the risky asset
performs well or expected in the first years, an excess return is made over the
entire provision. However, after the first years the provision of the liabilities has
decreased, due to the first payouts that have been made. Therefore, the own
funds of the insurance undertaking, relative to the value of the liabilities, are
higher. This will have a decreasing effect on the probability of ruin. Therefore,
the cashflow pattern which contains a higher concentration of liabilities in the
first years (the decreasing cashflows pattern), results in the lowest probability
of default.

In the previous section, we have shown that insurance companies which all start
with a Solvency II ratio of 100%, have different probabilities of ruin and default
at longer time horizons. The differences are caused by different investment
strategies and different maturities of the guarantee. Here we have shown that
also the cashflow pattern influences probabilities of ruin and default. Therefore,
it is necessary to take those factors into account in Solvency II, and one should
not focus solely on the time horizon of one year.
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10 Adding mean reversion to the model

In the previous sections, we have assumed the value of the risky asset follows a
geometric Brownian motion. Therefore, the standard deviation of the return is
proportional to the square root of time. In this section, we will investigate the
effect of adding mean reversion to the model. There has been much debate on
the question whether risky assets show mean reverting behavior. Here, we will
not question whether risky assets show mean reversion behavior or not. We are
interested in the sensitivity of the results for the assumption made about the
mean reverting behavior of the risky asset.
We will assume the stochastic part of the risky asset returns follows an Ornstein-
Uhlenbeck process instead of a Brownian motion. The specification of the
Ornstein-Uhlenbeck process is as follows:

dXt = −aXtdt+ σdWt. (52)

Wt follows a standardized Brownian motion. Parameter a represents the mean
reversion speed. If a = 0, there is no mean reversion, and the model reduces to
an ordinary Brownian motion. The value of X at time t depends on the value
of X at time zero as follows [22]:

Xt = X0e
−at + ϵt ∼ N

(
0,

σ2

2a
(1− e−2at)

)
(53)

A deviation of X is corrected and pulled towards the mean of zero by the term
e−at. The size of the standard deviation converges to σ√

2a
as t → ∞. For a

Brownian motion, the standard deviation goes to infinity as t goes to infinity.

Because the distribution of the risky asset returns at a certain time is known,
we can compute the probability of default after one year and at maturity. It is
possible to compute the ruin probability, by using results from investigations of
the first passage times of an Ornstein Uhlenbeck process [22], but we will leave
this for future research.

For the geometric Brownian motion, the assets develop as follows:

A(t) = e((βδ+(1−β)r−β2σ2/2)t+βσw(t))(1 + SC) (54)

Now, assuming mean reversion, and σ̃ = σ√
2a

√
(1− e−2at) the development of

the value of the assets in time equals:

A(t) = e((βδ+(1−β)r)t−β2σ̃2/2+βσ̃w(1))(1 + SC) (55)

Using this, we can compute the probability of ruin and default, analogous to
section 8.1.

SC = e−βσ̃Φ−1(1−α)−β(δ−rN)−β2σ̃2/2 − 1 (56)

Pd = Φ
(− log(1 + SC)− (β(δ − rN)− β2σ̃2/2)

βσ̃

)
(57)
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The analytical results for the case of one guarantee at maturity are shown in
Figure 24. The results of simulations in Scilab, analogous to section 9, are
shown in Figure 23. The results are consistent with the expectations. If the
mean reversion speed increases, the probability of default at maturity signifi-
cantly decreases, especially for longer time horizons. The standard deviation
of the returns of the risky asset decreases due to the mean reversion. There-
fore, on the long run, investing in a risky asset is profitable, and will lead to
excess return. It is therefore more likely that in the long run, the insurance
undertaking is able to pay its obligations. We have used relatively small mean
reversion speeds. If the speed equals 0.05, approximately 5% of the deviation
of the return with respect to the mean is corrected over one year. Even if this
relatively low speed is used, the effects are enormous.

Adding mean reversion also affects the relative size of the probabilities of de-
fault of different cashflows pattern. If we compare Figure 23 and Figure 22,
we see that probabilities of default are lower if mean reversion is added, like we
expect. In the absence of mean reversion, the decreasing cashflows pattern leads
to the lowest probability of default. If mean reversion is added, one cashflow at
maturity leads to the lowest probability of default.

The assumption for the mean reversion speed substantially influences probabil-
ities of ruin and default, especially for longer time horizons. Therefore, if longer
time horizons are considered, one should be aware of this sensitivity, and extra
care should be taken when setting the assumptions.
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Figure 23: Default and ruin probabilities if mean reversion is added to the
model. If we compare the results with Fig 22, we see that adding mean reversion
substantially decreases the default probability, for all cashflows patterns. In the
absence of mean reversion, a decreasing cashflows pattern leads to the lowest
probability of default. If mean reversion is added, this role is taken over by the
pattern which consists of one cashflow at maturity. If a longer time horizon is
considered (i.e. longer than the one-year horizon in Solvency II), one should be
aware that results are more sensitive to the assumptions chosen.

11 Implication for the level playing field

One of the purposes of Solvency II is to create a level playing field for all insur-
ance companies in Europe. Having this in mind, one expects that two insurance
companies, both with a solvency ratio of 100%, are equally safe. As we have
seen, the probability that the undertaking can meet its obligations to the cus-
tomer can differ substantial depending on the investment strategy, the time the
payouts have to be made, and the cashflow pattern. Therefore, the question
rises if Solvency II should focus entirely on a one-year horizon, or whether also
other time horizons need to be taken into consideration. In this perspective, we
can learn from discussions in the field of Pension Funds in the Netherlands.
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Figure 24: Analytical results of the influence of the mean reversion speed as-
sumption on the default probability at maturity. One nominal guarantee at
maturity is considered. Especially for longer guarantees, mean reversion sub-
stantially decreases the default probability.

In the Netherlands, the regulatory framework for Pension Funds, the FTK,
consists of three parts:

• A solvency test over a one year horizon

• A continuity test over a longer horizon (15 years)

• A minimum funding ratio

As F. de Jong and A. Pelsser sketch in [23], the continuity test used to be seen
as the most important of the three. However, currently the focus is on the one
year solvency test. The asset mix of the pension fund is often adapted to reach
one year nominal security. This leads to tensions between the long term objec-
tives of the pension fund, and the short term regulatory demands. Therefore,
they plead for a more prominent role of the continuity test, like it was intended
in the FTK.
Pension funds and insurance companies cannot be compared one-to-one, since
pension funds have the right to cut the rights of the participants in the fund
if a severe market shock has occurred, and has the objective to compensate
the participants for inflation. Insurance companies often have nominal obli-
gations, or predetermined (inflation) guarantees. However, there is a parallel
between the two. For both, the time horizon considered influences the con-
clusions drawn from a solvency study. On a one year horizon, regulation can
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create a level playing field for funding security (“dekkingszekerheid”). However,
the long term security of payouts (“uitkeringszekerheid” can differ substantial.
Therefore, we plead for an extension of Solvency II, taking more time horizons
into consideration.

If the Solvency II framework is extended to longer time horizons, a new chal-
lenge will rise. As we have seen, the long term results can be very sensitive to
assumptions, like mean reversion behavior of risky assets. In sections 9 and 10,
the required Solvency Capital over a one year horizon is typically around 7%
of the provision, regardless of the mean reversion speed and cashflow pattern.
For longer horizons, default probabilities are very sensitive to the mean rever-
sion speed. When analyzing the results, one should be aware of the impact
assumptions can have.
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12 Conclusions

In the first part of this thesis, we investigated misspecifications and misinterpre-
tations of Value-at-Risk models. If VaR models are backtested using a rolling
window without correcting for this (a misinterpretation), the probability of find-
ing an extreme event can typically increase by a factor 4 if data follows a Random
Walk, and even by a factor 7 when data follows an AR(1) process. This can
lead to a false rejection of the model. Therefore, this effect should be taken
into consideration when conclusions are drawn from a backtest with a rolling
window. In the evaluation report of the FTK, the validity of the equity stress
parameter for Dutch pension funds is backtested using a rolling window. In the
report, it is concluded that the stress parameter is too low, given the shocks
that have occurred in the past years. We have shown that the rejection of this
parameter can largely be explained by the use of a rolling window.
We investigated four misspecifications. If autocorrelation in errors is neglected,
but normality is assumed, the probability of finding an extreme event can in-
crease substantial. This effect increases if the measure for autocorrelation in-
creases. Based on historic interest rate data, we find that for relevant parameter
values, the probability can increase by a factor 3. If errors are Student-t dis-
tributed, or clustered volatility is neglected, we find theoretical factors around
2. Based on historic equity data, we have shown that for relevant parameter
values, the effect of neglecting clustered volatility can result in an increase by
a factor around 1.5. Scaling up the monthly Value-at-Risk of a Jump Diffusion
process to a yearly VaR by using the square root of time rule, can theoretically
both lead to an under- and overestimation of the yearly VaR, depending on the
frequency of the jumps. Based on calibrations of Jump Diffusion models on
historic equity (option) data, we find that for realistic parameter values, both
underestimations and overestimations of the VaR can be found.

In the second part of this thesis, we have studied insurance companies all start-
ing with a Solvency II ratio of 100%. We have shown that within-horizon risk
increases with time, but end-of-horizon risk can decrease after a certain point.
The gap between the two, representing companies that ruin at a certain point in
time, but would have been able to recover from this situation and fulfil all their
obligations, increases with time. Next to that, probabilities of default and ruin
over longer time horizons depend on the investment policy, the cashflow pattern
of the liabilities, and the duration of the liabilities. Therefore, we conclude that
Solvency II should not focus solely on the one-year horizon, but should also
take longer time horizons into account. Probabilities of default decrease sub-
stantially if risky assets are assumed to be mean reverting, in particular for long
dated liabilities. If longer time horizons are taken into account, the sensitivity
of the results for the assumptions made will increase. Therefore, if longer time
horizons are considered, assumptions like mean reversion should be chosen with
care.

65



References

[1] DIRECTIVE 2009/138/EC, 2009

[2] CEIOPS-DOC-33/09

[3] F. Diebold, A. Hickman, A. Inoue, and T. Schuermann, Converting 1-
day volatility to h-day volatility: Scaling by

√
h is worse than you think,

Discussion paper series, no. 97-34, Wharton, 1997

[4] J. Danielsson and J.P. Zigrand, On time-scaling of risk and the square-
root-of-time rule, Journal of Banking & Finance 30, pp. 2701-2713, 2006

[5] A.J. McNeil, Extreme value theory for risk managers, RISK Books, pp.
93-113, 1999

[6] A.J. McNeil and R. Frey, Estimation of tail-related risk measures for het-
eroscedastic financial time series: an extreme value approach, Journal of
Empirical Finance, 7, pp. 271-300, 2000

[7] J. Danielsson and C. de Vries, Value-at-Risk and Extreme Returns, Annales
d’economie et de statistique, No 60, pp. 236-269, 2000

[8] T.G. Andersen, R.A. Davis, J-P Kreiss and T. Mikosch, Handbook of Fi-
nancial Time Series, Springer, May 2009

[9] R. Merton, Option pricing when underlying stock returns are discontinuous,
Journal of Financial Economics, 3, pp. 125-144, 1976

[10] S.G. Kou, A Jump-Diffusion model for option pricing, Management Sci-
ence, Vol. 48 No. 8, pp. 1086-1101, 2002

[11] L. Andersen and J. Andreasen, Jump-Diffusion Processes: Volatility Smile
Fitting and Numerical Methods for Option Pricing, Review of Derivatives
Research, 4, pp. 231-262, 2000

[12] C. He, J. S. Kennedy , T. Coleman , P. A. Forsyth , Y. Li and K. Vet-
zal, Calibration and hedging under jump diffusion, Review of Derivatives
Research, Vol. 9(1), pp. 1-35, 2006

[13] L.O. Scott, Pricing stock options in a Jump-Diffusion model with stochas-
tic volatility and interest rates: applications of fourier inversion methods,
Mathematical Finance, Vol. 7 No. 4, pp. 413-424, 1997

[14] Rapport Evaluatie Financieel Toetsingskader, www.rijksoverheid.nl, April
2010

[15] J.Y. Campbell and L.M. Viceira, The Term Structure of the Risk-Return
Tradeoff, NBER Working Paper 11119

66



[16] R.P.M.M. Hoevenaars, R. D.J. Molenaar, P.C. Schotman and T.B.M.
Steenkamp, Strategic asset allocation with liabilities: Beyond stocks and
bonds, Journal of Economic Dynamics & Control, 32 pp. 2939-2970, 2008

[17] P. Devolder, Solvency requirements for long term guarantee: risk measure
versus probability of ruin, European Actuarial Journal, Vol. 1, 2, pp. 199-
214, 2011

[18] S.R. Thorley, The Time-Diversification Controversy, Financial Analysts
Journal, Vol.51, No.3, pp. 68-76, 1995

[19] M. Kritzman and D. Richm, The Mismeasurement of Risk, Financial An-
alysts Journal, Vol. 58, No.3, pp. 91-99, 2002

[20] M. Barth, A comparison of risk-based capital standards under the expected
policyholder deficit and the probability of ruin approach, The Journal of
Risk and Insurance, Vol. 67, No.3, pp. 387-413, 2000

[21] S. Yen and S. Lin, Re-examining the contributon of Intra-Horizon risk
measures, online paper

[22] C. Yi, On the first passage time distribution of an Ornstein-Uhlenbeck
process, Journal of Quantitative Finance, Vo.10, 9, 2010

[23] F. de Jong and A. Pelsser, Herziening Financieel Toetsingskader, nea paper
33, Netspar economische adviezen, 2010

67



A Minimum of a geometric Brownian motion

Analogous to P. Devolder [17], we will use the law of the minimum of a geomet-
ric Brownian motion to compute probabilities of ruin.

Let w(t) be a standard Brownian motion.

S(t) = e(µ−σ2/2)t+σw(t)

z = min0≤s≤tS(s)

0 < L ≤ 1

P (z ≤ L) = Φ(d1) + L
2µ

σ2 −1 · Φ(d2)

d1,2 =
log(L)∓ (µ− σ2/2)t

σ
√
t

(58)
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B The N -year SC, probabilities of ruin and de-
fault for different investment strategies

Investing the SC in the risk free asset, rebalance assets

A(t) = e((βδ+(1−β)r−β2σ2/2)+βσw(t)) + SC · ert (59)

SCreb,rf (N) = 1− eβσΦ
−1(1−α)

√
N+(β(δ−r)−β2σ2/2)N (60)

Pr,reb,rf = Φ
( log(1− SC)− (β(δ − r)− β2σ2/2)N

βσ
√
N

)
+(1− SC)

2β(δ−r)

β2σ2 −1 · Φ
( log(1− SC) + (β(δ − r)− β2σ2/2)N

βσ
√
N

)
(61)

Pd,reb,rf = Φ
( log(1− SC)− (β(δ − r)− β2σ2/2)N

βσ
√
N

)
(62)

Investing the SC in the current asset mix, do nothing

A(t) = (1− β)(1 + SC) · ert + β(1 + SC) · e(δ−1/2σ2)t+σw(t) (63)

SCdn,cam(N) =
eσΦ

−1(1−α)
√
N+((δ−r)−σ2/2)N − 1

1− 1/β − eσΦ−1(1−α)
√
N+((δ−r)−σ2/2)N

(64)

Pr,dn,cam = Φ
( log( 1−SC/β+SC

1+SC )− ((δ − r)− σ2/2)N

σ
√
N

)
+(

1− SC/β + SC

1 + SC
)

2(δ−r)

σ2 −1 · Φ
( log( 1−SC/β+SC

1+SC ) + ((δ − r)− σ2/2)N

σ
√
N

)
(65)

Pd,dn,cam = Φ
( log( 1−SC/β+SC

1+SC )− ((δ − r)− σ2/2)N

σ
√
N

)
(66)

Investing the SC in the risk free asset, do nothing

A(t) = (1− β + SC) · ert + β · e(δ−1/2σ2)t+σw(t) (67)

SCdn,rf (N) = β(1− eσΦ
−1(1−α)

√
N+((δ−r)−σ2/2)N (68)
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Pr,dn,rf = Φ
( log(1− SC/β)− ((δ − r)− σ2/2)N

σ
√
N

)
+(1− SC/β)

2(δ−r)

σ2 −1 · Φ
( log(1− SC/β) + ((δ − r)− σ2/2)N

σ
√
N

)
(69)

Pd,dn,rf = Φ
( log(1− SC/β)− ((δ − r)− σ2/2)N

σ
√
N

)
(70)
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C R Code

Code used in section 4

alpha← c(rep(0,10),rep(0.1,9), rep(0.2,8),rep(0.3,7),rep(0.4,6),
rep(0.5,5),rep(0.6,4),rep(0.7,3),rep(0.8,2),0.9)
beta←c(c(0:9)/10,c(0:8)/10,c(0:7)/10,c(0:6)/10,c(0:5)/10,
c(0:4)/10,c(0:3)/10,c(0:2)/10,c(0:1)/10,0)
p←rep(0,55)
num←1000000
k←12
for (i in 1:55){
a←alpha[i]
b←beta[i]
set.seed(1)
garch.sim=garch.sim(alpha=c(0.1,a),beta=b,n=k*num)
sd←sd(garch.sim)
data←matrix(garch.sim,nrow=k,ncol=num)
data←t(data)
A←rowSums(data)
B←A[A>qnorm(0.995)*sd*sqrt(k)]
n←length(B)
prob←n/num
p[i]←prob
}

Code used in section 3

nu←c(rep(4,6),rep(5,6),rep(6,6),rep(7,6),rep(8,6),rep(9,6),rep(10,6),rep(100,6))
k←c(rep(c(1,2,3,4,6,12),8))
p←rep(0,48)
num←1000000
for (i in 1:48){
a←nu[i]
b←k[i]
set.seed(1)
rand←rt(b*num,a)
sd←sd(rand)
data←matrix(rand,nrow=b,ncol=num)
data←t(data)
A←rowSums(data)
B←A[A>qnorm(0.995)*sd*sqrt(b)]
n←length(B)
prob←n/num
p[i]←prob
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}

Code used in section 5

lambda←c(rep(0,6),rep(1/(10*12),6),rep(1/(20*12),6),rep(1/(30*12),6),rep(1/(50*12),6))
delta ←rep(c(0.01,0.2,0.4,0.6,0.8,1),5)
sigma ←0.15/sqrt(12)
mu ←0
p ←rep(0,30)
p2 ←rep(0,30)
sdwaarde ←rep(0,30)
quantwaarde ←rep(0,30)
quantwaardeopgeschaald ←rep(0,30)
num ←1000000
k ←12
for (i in 1:30){
l ←lambda[i]
d ←delta[i]
set.seed(1)

errornormal ←rnorm(num*k)
errorpoisson ←rpois(num*k,l)
reeks ←mu+sigma*errornormal+log(d)*errorpoisson
sd ←sd(reeks)
sdwaarde[i] ←sd
quant ←quantile(reeks,0.005)
quantwaarde[i] ←quant
data ←matrix(reeks,nrow=k,ncol=num)
data ←t(data)
A ←rowSums(data)
quant2 ←quantile(A,0.005)
quantwaardeopgeschaald[i] ←quant2
B ←A[A<(-qnorm(0.995)*sd*sqrt(k))]
C ←A[A<quant*sqrt(k)]
n ←length(B)
prob ←n/num
p[i] ←prob
m ←length(C)
prob2 ←m/num
p2[i] ←prob2
}
ratio ← (1-exp(quantwaardeopgeschaald))/(sqrt(k)*(1-exp(quantwaarde)))
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D Scilab Code

Code computation probabilities of ruin and default:

stacksize(”max”)
clear

//number of simulations
N=5000
//number of years
y=30
//steps per year
k=12
// x = percentage equity. (1-x) in risk free bonds. Sigma standard deviation
equity.
x=0.2
deltat=1/12
//start interest rate
rstart=0.04

T=k*y

//read scenarios from file
rente=fscanfMat(”interest scenario.txt”)
equity=fscanfMat(”equity scenario.txt”)

//choose startratio such that one year default probability of 0.5%
start ratio vec=[1.08,1.08,1.08]
liability vec=[1,2,3]

yeardefaultvec=zeros(size(start ratio vec,”c”),1)
ruinvec=zeros(size(start ratio vec,”c”),1)
enddefaultvec=zeros(size(start ratio vec,”c”),1)

for v=1:size(start ratio vec,”c”)

// set the liabilities to one of the three specifications

liabcode=liability vec(v)
liab=zeros(T,1)
if liabcode==1 then
liab(T,1)=100;
elseif liabcode==2 then
for i= 1:T
liab(i)=100;
end
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elseif liabcode==3 then
for i= 1:T
liab(i)=100*(T-i+1);
end
end

start ratio=start ratio vec(v)
L=zeros((k*y+1),N)
E=zeros((k*y+1),N)
B=zeros((k*y+1),N)
A=zeros((k*y+1),N)
R=zeros((k*y+1),N)

discount t0=zeros(T,1)
for i=1:T
discount t0(i)=(1/(1+rstart))^(i/k)
end

duration=zeros(T,1)

L0=discount t0’*liab
A0=L0*start ratio

L(1,:)=L0
A(1,:)=A0
E(1,:)=x*A0
B(1,:)=(1-x)*A0
R(1,:)=(A(1,1)-L(1,1))/L(1,1)

for t=2:(T)
liab new=liab(t:size(liab,”r”))
timevec=zeros(size(liab new,”r”) ,1)
for j=1:size(liab new,”r”)
timevec(j)=j/k
end
payout=liab(t-1,1)
for n=1:N
discount=zeros(size(liab new,”r”),1)
for j=1:size(liab new,”r”)
discount(j)=(1/(1+rente(t,n)))^(j/k)
end
E(t,n)=E(t-1,n)*equity(t,n)/equity(t-1,n)
L(t,n)=discount’*liab new
duration(t-1)=(discount’*(liab new.*timevec))/(discount’*liab new)
B(t,n)=B(t-1,n)*((1+rente(t-1))^(1/k)+duration(t-1)*(rente(t-1,n)-rente(t,n)))
A(t,n)=E(t,n)+B(t,n)-payout
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E(t,n)=A(t,n)*x
B(t,n)=A(t,n)*(1-x)
R(t,n)=(A(t,n)-L(t,n))/L(t,n)
end
end

for t=(T+1):(T+1)
duration(T)=1/k
payout=liab(T,1)
for n=1:N
E(t,n)=E(t-1,n)*equity(t,n)/equity(t-1,n)
B(t,n)=B(t-1,n)*(1+rente(t-1))^(1/k)+duration(T)*(rente(t-1,n)-rente(t,n)))
A(t,n)=E(t,n)+B(t,n)-payout
E(t,n)=A(t,n)*x
B(t,n)=A(t,n)*(1-x)
end
end

//default at maturity
default=zeros(N,1)
for n=1:N
if(size(find(A(:,n)<0),”c”)>0) then default(n)=1;
else default(n)=0;
end
end

//probability of ruin
ruin=zeros(N,1)
//probability of default after one year
sol=zeros(N,1)
RU=A-L
for n=1:N
if(size(find(RU(:,n)<0),”c”)>0) then ruin(n)=1;
else ruin(n)=0;
end
if(size(find(RU(k,n)<0),”c”)>0) then sol(n)=1;
else sol(n)=0;
end
end

p default=sum(default)/size(default,”r”)
p ruin=sum(ruin)/size(ruin,”r”)
p default1year=sum(sol)/size(sol,”r”)

yeardefaultvec(v)=p default1year
ruinvec(v)=p ruin
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enddefaultvec(v)=p default
end

Interest rate and equity scenarios

stacksize(”max”)
clear
seed=1
//number of simulations
N=5000
//number of years
y=50
k=12
speed=0.1
// x = percentage equity. (1-x) in risk free bonds. Sigma standard deviation
equity.
x=0.2
sigma eq=0.16
sigma eq k=sigma eq/sqrt(k)
//sigma int=0.1
sigma int=0
sigma int k=sigma int/sqrt(k)
rho=0

delta=0.07
deltat=1/12
rstart=0.04
hulpspeed=exp(-speed*deltat)

T=k*y

rente=zeros((T+1),N)
equity=zeros((T+1),N)
ou=zeros((T+1),N)

rand1=rand(T,N,”normal”)
rand2help=rand(T,N,”normal”)
rand2=rho*rand1+sqrt((1-rho)^2)*rand2help

for j=1:N
rente(1,j)=rstart
equity(1,j)=1
ou(1,j)=0
for i=1:T
rente(i+1,j)=rente(i,j)*exp(rand1(i,j)*sigma int k-0.5*sigma int k^2)
ou(i+1,j)=ou(i,j)*hulpspeed + rand2(i,j)*sigma eq*sqrt((1-exp(-2*speed*deltat))/(2*speed))
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equity(i+1,j)=equity(i,j)*exp(delta/k-0.5*sigma eq^2*(1-exp(-2*speed*deltat))/(2*speed))
*exp(ou(i+1,j)-ou(i,j))

end
end
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